Ollama Chat Model node

🔐🦙Private & Local Ollama Self-Hosted + Dynamic LLM Router

Published 1 day ago

Created by

joe
Joseph LePage

Categories

Template description

Who is this for?

This workflow template is designed for AI enthusiasts, developers, and privacy-conscious users who want to leverage the power of local large language models (LLMs) without sending data to external services. It's particularly valuable for those running Ollama locally who want intelligent routing between different specialized models.

What problem is this workflow solving?

When working with multiple local LLMs, each with different strengths and capabilities, it can be challenging to manually select the right model for each specific task. This workflow automatically analyzes user prompts and routes them to the most appropriate specialized Ollama model, ensuring optimal performance without requiring technical knowledge from the end user.

What this workflow does

This intelligent router:

  • Analyzes incoming user prompts to determine the nature of the request
  • Automatically selects the optimal Ollama model from your local collection based on task requirements
  • Routes requests between specialized models for different tasks:
    • Text-only models (qwq, llama3.2, phi4) for various reasoning and conversation tasks
    • Code-specific models (qwen2.5-coder) for programming assistance
    • Vision-capable models (granite3.2-vision, llama3.2-vision) for image analysis
  • Maintains conversation memory for consistent interactions
  • Processes everything locally for complete privacy and data security

Setup

  1. Ensure you have Ollama installed and running locally
  2. Pull the required models mentioned in the workflow using Ollama CLI (e.g., ollama pull phi4)
  3. Configure the Ollama API credentials in n8n (default: http://127.0.0.1:11434)
  4. Activate the workflow and start interacting through the chat interface

How to customize this workflow to your needs

  • Add or remove models from the router's decision framework based on your specific Ollama collection
  • Adjust the system prompts in the LLM Router to prioritize different model selection criteria
  • Modify the decision tree logic to better suit your specific use cases
  • Add additional preprocessing steps for specialized inputs

This workflow demonstrates how n8n can be used to create sophisticated AI orchestration systems that respect user privacy by keeping everything local while still providing intelligent model selection capabilities.

Share Template

More AI workflow templates

OpenAI Chat Model node
SerpApi (Google Search) node

AI agent chat

This workflow employs OpenAI's language models and SerpAPI to create a responsive, intelligent conversational agent. It comes equipped with manual chat triggers and memory buffer capabilities to ensure seamless interactions. To use this template, you need to be on n8n version 1.50.0 or later.
n8n-team
n8n Team
HTTP Request node
Merge node
+7

Scrape and summarize webpages with AI

This workflow integrates both web scraping and NLP functionalities. It uses HTML parsing to extract links, HTTP requests to fetch essay content, and AI-based summarization using GPT-4o. It's an excellent example of an end-to-end automated task that is not only efficient but also provides real value by summarizing valuable content. Note that to use this template, you need to be on n8n version 1.50.0 or later.
n8n-team
n8n Team
HTTP Request node
WhatsApp Business Cloud node
+10

Building Your First WhatsApp Chatbot

This n8n template builds a simple WhatsApp chabot acting as a Sales Agent. The Agent is backed by a product catalog vector store to better answer user's questions. This template is intended to help introduce n8n users interested in building with WhatsApp. How it works This template is in 2 parts: creating the product catalog vector store and building the WhatsApp AI chatbot. A product brochure is imported via HTTP request node and its text contents extracted. The text contents are then uploaded to the in-memory vector store to build a knowledgebase for the chatbot. A WhatsApp trigger is used to capture messages from customers where non-text messages are filtered out. The customer's message is sent to the AI Agent which queries the product catalogue using the vector store tool. The Agent's response is sent back to the user via the WhatsApp node. How to use Once you've setup and configured your WhatsApp account and credentials First, populate the vector store by clicking the "Test Workflow" button. Next, activate the workflow to enable the WhatsApp chatbot. Message your designated WhatsApp number and you should receive a message from the AI sales agent. Tweak datasource and behaviour as required. Requirements WhatsApp Business Account OpenAI for LLM Customising this workflow Upgrade the vector store to Qdrant for persistance and production use-cases. Handle different WhatsApp message types for a more rich and engaging experience for customers.
jimleuk
Jimleuk
HTTP Request node
Markdown node
+5

AI agent that can scrape webpages

⚙️🛠️🚀🤖🦾 This template is a PoC of a ReAct AI Agent capable of fetching random pages (not only Wikipedia or Google search results). On the top part there's a manual chat node connected to a LangChain ReAct Agent. The agent has access to a workflow tool for getting page content. The page content extraction starts with converting query parameters into a JSON object. There are 3 pre-defined parameters: url** – an address of the page to fetch method** = full / simplified maxlimit** - maximum length for the final page. For longer pages an error message is returned back to the agent Page content fetching is a multistep process: An HTTP Request mode tries to get the page content. If the page content was successfuly retrieved, a series of post-processing begin: Extract HTML BODY; content Remove all unnecessary tags to recude the page size Further eliminate external URLs and IMG scr values (based on the method query parameter) Remaining HTML is converted to Markdown, thus recuding the page lengh even more while preserving the basic page structure The remaining content is sent back to an Agent if it's not too long (maxlimit = 70000 by default, see CONFIG node). NB: You can isolate the HTTP Request part into a separate workflow. Check the Workflow Tool description, it guides the agent to provide a query string with several parameters instead of a JSON object. Please reach out to Eduard is you need further assistance with you n8n workflows and automations! Note that to use this template, you need to be on n8n version 1.19.4 or later.
eduard
Eduard
Merge node
Telegram node
Telegram Trigger node
+2

Telegram AI Chatbot

The workflow starts by listening for messages from Telegram users. The message is then processed, and based on its content, different actions are taken. If it's a regular chat message, the workflow generates a response using the OpenAI API and sends it back to the user. If it's a command to create an image, the workflow generates an image using the OpenAI API and sends the image to the user. If the command is unsupported, an error message is sent. Throughout the workflow, there are additional nodes for displaying notes and simulating typing actions.
eduard
Eduard
Google Drive node
Binary Input Loader node
Embeddings OpenAI node
OpenAI Chat Model node
+5

Ask questions about a PDF using AI

The workflow first populates a Pinecone index with vectors from a Bitcoin whitepaper. Then, it waits for a manual chat message. When received, the chat message is turned into a vector and compared to the vectors in Pinecone. The most similar vectors are retrieved and passed to OpenAI for generating a chat response. Note that to use this template, you need to be on n8n version 1.19.4 or later.
davidn8n
David Roberts

Implement complex processes faster with n8n

red icon yellow icon red icon yellow icon