HTTP Request node
Webhook node
+3

Build Your Own Counseling Chatbot on LINE to Support Mental Health Conversations

Published 14 days ago

Categories

Template description

Are you looking to create a counseling chatbot that provides emotional support and mental health guidance through the LINE messaging platform ? This guide will walk you through connecting LINE with powerful AI language models like GPT-4 to build a chatbot that supports users in navigating their emotions, offering 24/7 conversational therapy and accessible mental health resources .

By leveraging LINE's webhook integration and Azure OpenAI , this template allows you to design a chatbot that is both empathetic and efficient, ensuring users receive timely and professional responses. Whether you're a developer, counselor, or business owner, this guide will help you create a customizable counseling chatbot tailored to your audience's needs.

Who Is This Template For?

Developers who want to integrate AI-powered chatbots into the LINE platform for mental health applications.
Counselors & Therapists looking to expand their reach and provide automated emotional support to clients outside of traditional sessions.
Businesses & Organizations focused on improving mental health accessibility and offering innovative solutions to their users.
Educators & Nonprofits seeking tools to provide free or low-cost counseling services to underserved communities.

How this work?

  • Line Webhook to receive new message
  • Send loading animation in Line
  • Check if the input is text or not
  • Send the text as prompt in chat model (GPT 4o)
  • Reply the message to user (you'll need 'edit field' to format it before reply)

Pre-Requisites

  • You have access to the LINE Developers Console.
  • An Azure OpenAI account with necessary credentials.

Set-up

  1. To receive messages from LINE, configure your webhook:
  • Set up a webhook in LINE Developer Console.
  • Copy the Webhook URL from the Line Chatbot node and paste it into the LINE Console.
  • Ensure to remove any 'test' part when moving to production.
  1. The loading animation reassures users that the system is processing their request.
  • Authorize using header authorization
  1. Message Handling
  • Use the Check Message Type IsText? node to verify if the incoming message is text.
    If the message type is text, proceed with ChatGPT processing; otherwise, send a reply indicating non-text inputs are not supported.
  1. AI Agent Configuration
  • Define the system message within the AI Agent node to guide the conversation based on desired interaction principles.
  • Connect the Azure OpenAI Chat Model to the AI Agent.
  1. Formatting Responses
  • Ensure responses are properly formatted before sending them back to the user.
  1. Reply Message
  • Use the ReplyMessage - Line node to send the formatted response.
  • Ensure proper header authorization using Bearer tokens.

Share Template

More AI workflow templates

OpenAI Chat Model node
SerpApi (Google Search) node

AI agent chat

This workflow employs OpenAI's language models and SerpAPI to create a responsive, intelligent conversational agent. It comes equipped with manual chat triggers and memory buffer capabilities to ensure seamless interactions. To use this template, you need to be on n8n version 1.50.0 or later.
n8n-team
n8n Team
HTTP Request node
Merge node
+7

Scrape and summarize webpages with AI

This workflow integrates both web scraping and NLP functionalities. It uses HTML parsing to extract links, HTTP requests to fetch essay content, and AI-based summarization using GPT-4o. It's an excellent example of an end-to-end automated task that is not only efficient but also provides real value by summarizing valuable content. Note that to use this template, you need to be on n8n version 1.50.0 or later.
n8n-team
n8n Team
HTTP Request node
Markdown node
+5

AI agent that can scrape webpages

⚙️🛠️🚀🤖🦾 This template is a PoC of a ReAct AI Agent capable of fetching random pages (not only Wikipedia or Google search results). On the top part there's a manual chat node connected to a LangChain ReAct Agent. The agent has access to a workflow tool for getting page content. The page content extraction starts with converting query parameters into a JSON object. There are 3 pre-defined parameters: url** – an address of the page to fetch method** = full / simplified maxlimit** - maximum length for the final page. For longer pages an error message is returned back to the agent Page content fetching is a multistep process: An HTTP Request mode tries to get the page content. If the page content was successfuly retrieved, a series of post-processing begin: Extract HTML BODY; content Remove all unnecessary tags to recude the page size Further eliminate external URLs and IMG scr values (based on the method query parameter) Remaining HTML is converted to Markdown, thus recuding the page lengh even more while preserving the basic page structure The remaining content is sent back to an Agent if it's not too long (maxlimit = 70000 by default, see CONFIG node). NB: You can isolate the HTTP Request part into a separate workflow. Check the Workflow Tool description, it guides the agent to provide a query string with several parameters instead of a JSON object. Please reach out to Eduard is you need further assistance with you n8n workflows and automations! Note that to use this template, you need to be on n8n version 1.19.4 or later.
eduard
Eduard
HTTP Request node
WhatsApp Business Cloud node
+10

Building Your First WhatsApp Chatbot

This n8n template builds a simple WhatsApp chabot acting as a Sales Agent. The Agent is backed by a product catalog vector store to better answer user's questions. This template is intended to help introduce n8n users interested in building with WhatsApp. How it works This template is in 2 parts: creating the product catalog vector store and building the WhatsApp AI chatbot. A product brochure is imported via HTTP request node and its text contents extracted. The text contents are then uploaded to the in-memory vector store to build a knowledgebase for the chatbot. A WhatsApp trigger is used to capture messages from customers where non-text messages are filtered out. The customer's message is sent to the AI Agent which queries the product catalogue using the vector store tool. The Agent's response is sent back to the user via the WhatsApp node. How to use Once you've setup and configured your WhatsApp account and credentials First, populate the vector store by clicking the "Test Workflow" button. Next, activate the workflow to enable the WhatsApp chatbot. Message your designated WhatsApp number and you should receive a message from the AI sales agent. Tweak datasource and behaviour as required. Requirements WhatsApp Business Account OpenAI for LLM Customising this workflow Upgrade the vector store to Qdrant for persistance and production use-cases. Handle different WhatsApp message types for a more rich and engaging experience for customers.
jimleuk
Jimleuk
Merge node
Telegram node
Telegram Trigger node
+2

Telegram AI Chatbot

The workflow starts by listening for messages from Telegram users. The message is then processed, and based on its content, different actions are taken. If it's a regular chat message, the workflow generates a response using the OpenAI API and sends it back to the user. If it's a command to create an image, the workflow generates an image using the OpenAI API and sends the image to the user. If the command is unsupported, an error message is sent. Throughout the workflow, there are additional nodes for displaying notes and simulating typing actions.
eduard
Eduard
Google Drive node
Binary Input Loader node
Embeddings OpenAI node
OpenAI Chat Model node
+5

Ask questions about a PDF using AI

The workflow first populates a Pinecone index with vectors from a Bitcoin whitepaper. Then, it waits for a manual chat message. When received, the chat message is turned into a vector and compared to the vectors in Pinecone. The most similar vectors are retrieved and passed to OpenAI for generating a chat response. Note that to use this template, you need to be on n8n version 1.19.4 or later.
davidn8n
David Roberts

Implement complex processes faster with n8n

red icon yellow icon red icon yellow icon