GitHub Trigger node triggers the workflow when a release event takes place in the specified repository.
Slack node posts a message in a specified channel with the text "New release is available in {repository name}", along with further details and a link to the release.
Task:
Create a simple API endpoint using the Webhook and Respond to Webhook nodes
Why:
You can prototype or replace a backend process with a single workflow
Main use cases:
Replace backend logic with a workflow
Task:
Merge two datasets into one based on matching rules
Why:
A powerful capability of n8n is to easily branch out the workflow in order to process different datasets. Even more powerful is the ability to join them back together with SQL-like joining logic.
Main use cases:
Appending data sets
Keep only new items
Keep only existing items
This workflow will backup your workflows to Github. It uses the public api to export all of the workflow data using the n8n node.
It then loops over the data checks in Github to see if a file exists that uses the workflow name. Once checked it will then update the file on Github if it exists, Create a new file if it doesn't exist and if it's the same it will ignore the file.
Config Options
repo_owner - Github owner
repo_name - Github repository name
repo_path - Path within the Github repository
>This workflow has been updated to use the n8n node and the code node so requires at least version 0.198.0 of n8n
This workflow allows extracting data from multiple pages website.
The workflow:
1) Starts in a country list at https://www.theswiftcodes.com/browse-by-country/.
2) Loads every country page (https://www.theswiftcodes.com/albania/)
3) Paginates every page in the country page.
4) Extracts data from the country page.
5) Saves data to MongoDB.
6) Paginates through all pages in all countries.
It uses getWorkflowStaticData('global') method to recover the next page (saved from the previous page), and it goes ahead with all the pages.
There is a first section where the countries list is recovered and extracted.
Later, I try to read if a local cache page is available and I recover the cached page from the disk.
Finally, I save data to MongoDB, and we paginate all the pages in the country and for all the countries.
I have applied a cache system to save a visited page to n8n local disk. If I relaunch workflow, we check if a cache file exists to discard non-required requests to the webpage.
If the data present in the website changes, you can apply a Cron node to check the website once per week.
Finally, before inserting data in MongoDB, the best way to avoid duplicates is to check that swift_code (the primary value of the collection) doesn't exist.
I recommend using a proxy for all requests to avoid IP blocks. A good solution for proxy plus IP rotation is scrapoxy.io.
This workflow is perfect for small data requirements. If you need to scrape dynamic data, you can use a Headless browser or any other service.
If you want to scrape huge lists of URIs, I recommend using Scrapy + Scrapoxy.
This workflow allows to scrape Google Maps data in an efficient way using SerpAPI.
You'll get all data from Gmaps at a cheaper cost than Google Maps API.
Add as input, your Google Maps search URL and you'll get a list of places with many data points such as:
phone number
website
rating
reviews
address
And much more.
Full guide to implement the workflow is here:
https://lempire.notion.site/Scrape-Google-Maps-places-with-n8n-b7f1785c3d474e858b7ee61ad4c21136?pvs=4
Temporary solution using the undocumented REST API for backups using Google drive.
Please note that there are issues with this workflow. It does not support versioning, so please know that it will create multiple copies of the workflows so if you run this daily it will make the folder grow quickly. Once I figure out how to version in Gdrive I'll update it here.
Temporary solution using the undocumented REST API for backups using Google drive.
Please note that there are issues with this workflow. It does not support versioning, so please know that it will create multiple copies of the workflows so if you run this daily it will make the folder grow quickly. Once I figure out how to version in Gdrive I'll update it here.
A robust n8n workflow designed to enhance Telegram bot functionality for user management and broadcasting. It facilitates automatic support ticket creation, efficient user data storage in Redis, and a sophisticated system for message forwarding and broadcasting.
How It Works
Telegram Bot Setup: Initiate the workflow with a Telegram bot configured for handling different chat types (private, supergroup, channel).
User Data Management: Formats and updates user data, storing it in a Redis database for efficient retrieval and management.
Support Ticket Creation: Automatically generates chat tickets for user messages and saves the corresponding topic IDs in Redis.
Message Forwarding: Forwards new messages to the appropriate chat thread, or creates a new thread if none exists.
Support Forum Management: Handles messages within a support forum, differentiating between various chat types and user statuses.
Broadcasting System: Implements a broadcasting mechanism that sends channel posts to all previous bot users, with a system to filter out blocked users.
Blocked User Management: Identifies and manages blocked users, preventing them from receiving broadcasted messages.
Versatile Channel Handling: Ensures that messages from verified channels are properly managed and broadcasted to relevant users.
Set Up Steps
Estimated Time**: Around 30 minutes.
Requirements**: A Telegram bot, a Redis database, and Telegram group/channel IDs are necessary.
Configuration**: Input the Telegram bot token and relevant group/channel IDs. Configure message handling and user data processing according to your needs.
Detailed Instructions**: Sticky notes within the workflow provide extensive setup information and guidance.
Live Demo Workflow
Bot: Telegram Bot Link (Click here)
Support Group: Telegram Group Link (Click here)
Broadcasting Channel: Telegram Channel Link (Click here)
Keywords: n8n workflow, Telegram bot, chat ticket system, Redis database, message broadcasting, user data management, support forum automation
This n8n workflow template lets teams easily generate a custom AI chat assistant based on the schema of any Notion database. Simply provide the Notion database URL, and the workflow downloads the schema and creates a tailored AI assistant designed to interact with that specific database structure.
Set Up
Watch this quick set up video 👇
Key Features
Instant Assistant Generation**: Enter a Notion database URL, and the workflow produces an AI assistant configured to the database schema.
Advanced Querying**: The assistant performs flexible queries, filtering records by multiple fields (e.g., tags, names). It can also search inside Notion pages to pull relevant content from specific blocks.
Schema Awareness**: Understands and interacts with various Notion column types like text, dates, and tags for accurate responses.
Reference Links**: Each query returns direct links to the exact Notion pages that inform the assistant’s response, promoting transparency and easy access.
Self-Validation**: The workflow has logic to check the generated assistant, and if any errors are detected, it reruns the agent to fix them.
Ideal for
Product Managers**: Easily access and query product data across Notion databases.
Support Teams**: Quickly search through knowledge bases for precise information to enhance support accuracy.
Operations Teams**: Streamline access to HR, finance, or logistics data for fast, efficient retrieval.
Data Teams**: Automate large dataset queries across multiple properties and records.
How It Works
This AI assistant leverages two HTTP request tools—one for querying the Notion database and another for retrieving data within individual pages. It’s powered by the Anthropic LLM (or can be swapped for GPT-4) and always provides reference links for added transparency.
Who is this for
This workflow is perfect for teams and individuals who manage extensive data in Notion and need a quick, AI-powered way to interact with their databases. If you're looking to streamline your knowledge management, automate searches, and get faster insights from your Notion databases, this workflow is for you. It’s ideal for support teams, project managers, or anyone who needs to query specific data across multiple records or within individual pages of their Notion setup.
Check out the Notion template this Assistant is set up to use: https://www.notion.so/templates/knowledge-base-ai-assistant-with-n8n
How it works
The Notion Database Assistant uses an AI Agent built with Retrieval-Augmented Generation (RAG) to query this Knowledge Base style Notion database. The assistant can search across multiple properties like tags or question and retrieves content from inside individual Notion pages for additional context.
Key features include:
Querying the database with flexible filters.
Searching within individual Notion pages and extracting relevant blocks.
Providing a reference link to the exact Notion pages used to inform its responses, ensuring transparency and easy verification.
This assistant uses two HTTP request tools—one for querying the Notion database and another for pulling data from within specific pages. It streamlines knowledge retrieval, offering a conversational, AI-driven way to interact with large datasets.
Set up
Find basic set up instructions inside the workflow itself or watch a quickstart video 👇
Note: This workflow uses the internal API which is not official. This workflow might break in the future.
The workflow executes every night at 23:59. You can configure a different time bin the Cron node.
Configure the GitHub nodes with your username, repo name, and the file path.
In the HTTP Request nodes (making a request to localhost:5678), create Basic Auth credentials with your n8n instance username and password.
This workflow is a experiment to build HTML pages from a user input using the new Structured Output from OpenAI.
How it works:
Users add what they want to build as a query parameter
The OpenAI node generate an interface following a structured output defined in the body
The JSON output is then converted to HTML along with a title
The HTML is encapsulated in an HTML node (where the Tailwind css script is added)
The HTML is rendered to the user via the Webhook response.
Set up steps
Create an OpenAI API Key
Create the OpenAI credentials
Use the credentials for both nodes HTTP Request (as Predefined Credential type) and OpenAI
Activate your workflow
Once active, go to the production URL and add what you'd like to build as the parameter "query"
Example: https://production_url.com?query=a%20signup%20form
Example of generated page