This n8n workflow demonstrates how you can summarise and automate post-meeting actions from video transcripts fed into an AI Agent.
Save time between meetings by allowing AI handle the chores of organising follow-up meetings and invites.
How it works
This workflow scans for the calendar for client or team meetings which were held online. * Attempts will be made to fetch any recorded transcripts which are then sent to the AI agent.
The AI agent summarises and identifies if any follow-on meetings are required.
If found, the Agent will use its Calendar Tool to to create the event for the time, date and place for the next meeting as well as add known attendees.
Requirements
Google Calendar and the ability to fetch Meeting Transcripts (There is a special OAuth permission for this action!)
OpenAI account for access to the LLM.
Customising the workflow
This example only books follow-on meetings but could be extended to generate reports or send emails.
This n8n workflow automates the process of parsing and extracting data from PDF invoices. With this workflow, accounts and finance people can realise huge time and cost savings in their busy schedules.
Read the Blog: https://blog.n8n.io/how-to-extract-data-from-pdf-to-excel-spreadsheet-advance-parsing-with-n8n-io-and-llamaparse/
How it works
This workflow will watch an email inbox for incoming invoices from suppliers
It will download the attached PDFs and processing them through a third party service called LlamaParse.
LlamaParse is specifically designed to handle and convert complex PDF data structures such as tables to markdown.
Markdown is easily to process for LLM models and so the data extraction by our AI agent is more accurate and reliable.
The workflow exports the extracted data from the AI agent to Google Sheets once the job complete.
Requirements
The criteria of the email trigger must be configured to capture emails with attachments.
The gmail label "invoice synced" must be created before using this workflow.
A LlamaIndex.ai account to use the LlamaParse service.
An OpenAI account to use GPT for AI work.
Google Sheets to save the output of the data extraction process although this can be replaced for whatever your needs.
Customizing this workflow
This workflow uses Gmail and Google Sheets but these can easily be swapped out for equivalent services such as Outlook and Excel.
Not using Excel? Simple redirect the output of the AI agent to your accounting software of choice.
This workflow will check a mailbox for new emails and if the Subject contains Expenses or Reciept it will send the attachment to Mindee for processing then it will update a Google sheet with the values.
To use this node you will need to set the Email Read node to use your mailboxes credentials and configure the Mindee and Google Sheets nodes to use your credentials.
Task:
Create a simple API endpoint using the Webhook and Respond to Webhook nodes
Why:
You can prototype or replace a backend process with a single workflow
Main use cases:
Replace backend logic with a workflow
Want to learn the basics of n8n? Our comprehensive quick quickstart tutorial is here to guide you through the basics of n8n, step by step.
Designed with beginners in mind, this tutorial provides a hands-on approach to learning n8n's basic functionalities.
You still can use the app in a workflow even if we don’t have a node for that or the existing operation for that. With the HTTP Request node, it is possible to call any API point and use the incoming data in your workflow
Main use cases:
Connect with apps and services that n8n doesn’t have integration with
Web scraping
How it works
This workflow can be divided into three branches, each serving a distinct purpose:
1.Splitting into Items (HTTP Request - Get Mock Albums):
The workflow initiates with a manual trigger (On clicking 'execute').
It performs an HTTP request to retrieve mock albums data from "https://jsonplaceholder.typicode.com/albums."
The obtained data is split into items using the Item Lists node, facilitating easier management.
2.Data Scraping (HTTP Request - Get Wikipedia Page and HTML Extract):
Another branch of the workflow involves fetching a random Wikipedia page using an HTTP request to "https://en.wikipedia.org/wiki/Special:Random."
The HTML Extract node extracts the article title from the fetched Wikipedia page.
3.Handling Pagination (The final branch deals with handling pagination for a GitHub API request):
It sends an HTTP request to "https://api.github.com/users/that-one-tom/starred," with parameters like the page number and items per page dynamically set by the Set node.
The workflow uses conditions (If - Are we finished?) to check if there are more pages to retrieve and increments the page number accordingly (Set - Increment Page).
This process repeats until all pages are fetched, allowing for comprehensive data retrieval.