This workflow automates enterprise claims cost leakage detection by identifying overpayments, policy deviations, and pricing inconsistencies across claims data. It supports claims operations, finance, and audit teams by providing continuous, AI-driven monitoring without manual review. Claims data is ingested through parallel HTTP requests, including claim history, policy details, pricing rules, and enrichment data. Historical claim patterns feed calculator-based risk scoring to flag potential leakage scenarios. All data streams are consolidated and analyzed using GPT-4 with structured outputs to detect anomalies, quantify leakage risk, and recommend corrective adjustments. The workflow generates claim-level findings and routes outcomes by severity: high-risk leakage triggers immediate email and Slack alerts, while lower-risk issues are compiled into periodic audit and recovery reports.
OpenAI API key, competitor data source API access, vendor monitoring service credentials
SaaS companies tracking competitor feature releases and pricing changes
Modify risk scoring formulas in Calculator nodes for industry-specific metrics
Transforms hours of manual competitor research into automated minutes-long cycles