HTTP Request node
Merge node
+6

🎨 Interactive Image Editor with FLUX.1 Fill Tool for Inpainting

Published 6 days ago

Created by

eduard
Eduard

Categories

Template description

Like this template? Connect with Eduard via LinkedIn.

This workflow is a prototype of an AI-powered image editing interface, similar to Photoshop's Generative Fill feature, but running entirely in the browser. It provides a web-based editor that allows users to:

  • Select areas in images using an adjustable brush tool
  • Input text prompts to guide the AI generation
  • Compare original and generated images side by side
  • Iterate on edits with different prompts and settings
  • Save or reuse generated images

🎨 Perfect for product catalog management, seasonal content updates, and creative image editing tasks!

📋 Requirements

🔧 Key Components

  1. Simple Editor Interface

    • HTML page with an editor is served on the Webhook call
    • Adjustable brush selection tool
    • Provides several mock examples and allows uploading custom images
    • Basic prompt and FLUX model parameter controls
  2. Image Processing Pipeline

    • Handles image and mask separately
    • Processes FLUX Fill API requests
    • Delivers results back to the editor
  3. Result Viewer

    • Split-screen comparison of original and generated images
    • Interactive slider for before/after comparison
    • Options to save or continue editing
    • Support for multiple iteration cycles

🎯 Use Cases

This prototype is particularly useful for:

  • Testing AI-powered image editing concepts
  • Quick product visualization experiments
  • Exploring creative image variations
  • Demonstrating inpainting capabilities

💡 Pro Tip: Save masks for frequently edited areas to quickly generate variations with different prompts!

The workflow can be extended to integrate with various data sources and can be customized for specific business needs.

Share Template

More Design workflow templates

HTTP Request node
S3 node
Respond to Webhook node
+2

Flux AI Image Generator

Easily generate images with Black Forest's Flux Text-to-Image AI models using Hugging Face’s Inference API. This template serves a webform where you can enter prompts and select predefined visual styles that are customizable with no-code. The workflow integrates seamlessly with Hugging Face's free tier, and it’s easy to modify for any Text-to-Image model that supports API access. Try it Curious what this template does? Try a public version here: https://devrel.app.n8n.cloud/form/flux Set Up Watch this quick set up video 👇 Accounts required Huggingface.co account (free) Cloudflare.com account (free - used for storage; but can be swapped easily e.g. GDrive) Key Features: Text-to-Image Creation**: Generates unique visuals based on your prompt and style. Hugging Face Integration**: Utilizes Hugging Face’s Inference API for reliable image generation. Customizable Visual Styles**: Select from preset styles or easily add your own. Adaptable**: Swap in any Hugging Face Text-to-Image model that supports API calls. Ideal for: Creators**: Rapidly create visuals for projects. Marketers**: Prototype campaign visuals. Developers**: Test different AI image models effortlessly. How It Works: You submit an image prompt via the webform and select a visual style, which appends style instructions to your prompt. The Hugging Face Inference API then generates and returns the image, which gets hosted on Cloudflare S3. The workflow can be easily adjusted to use other models and styles for complete flexibility.
max-n8n
Max Tkacz
HTTP Request node
Merge node
+5

Automatic Background Removal for Images in Google Drive

This n8n workflow simplifies the process of removing backgrounds from images stored in Google Drive. By leveraging the PhotoRoom API, this template enables automatic background removal, padding adjustments, and output formatting, all while storing the updated images back in a designated Google Drive folder. This workflow is very useful for companies or individuals that are spending a lot of time into removing the background from product images. How it Works The workflow begins with a Google Drive Trigger node that monitors a specific folder for new image uploads. Upon detecting a new image, the workflow downloads the file and extracts essential metadata, such as the file size. Configurations are set for background color, padding, output size, and more, which are all customizable to match specific requirements. The PhotoRoom API is called to process the image by removing its background and adding padding based on the settings. The processed image is saved back to Google Drive in the specified output folder with an updated name indicating the background has been removed. Requirements PhotoRoom API Key Google Drive API Access Customizing the Workflow Easily adjust the background color, padding, and output size using the configuration node. Modify the output folder path in Google Drive or replace Google Drive with another storage service if needed. For advanced use cases, integrate further image processing steps, such as adding captions or analyzing content using AI.
simonfes
Simon
HTTP Request node
Merge node
Redis node
+24

Realtime Notion Todoist 2-way Sync with Redis

Purpose This solution enables you to manage all your Notion and Todoist tasks from different workspaces as well as your calendar events in a single place. All tasks can be managed in Todoist and additionally Fantastical can be used to manage scheduled tasks & events all together. Demo & Explanation How it works The realtime sync consists of two workflows, both triggered by a registered webhook from either Notion or Todoist To avoid overwrites by lately arriving webhook calls, every time the current task is retrieved from both sides. Redis is used to prevent from endless loops, since an update in one system triggers another webhook call again. Using the ID of the task, the trigger is being locked down for 15 seconds. Depending on the detected changes, the other side is updated accordingly. Generally Notion is treaded as the main source. Using an "Obsolete" Status, it is guaranteed, that tasks never get deleted entirely by accident. The Todoist ID is stored in the Notion task, so they stay linked together An additional full sync workflow daily fixes inconsistencies, if any of them occurred, since webhooks cannot be trusted entirely. Since Todoist requires a more complex setup, a tiny workflow helps with activating the webhook. Another tiny workflow helps generating a global config, which is used by all workflows for mapping purposes. Mapping (Notion >> Todoist) Name: Task Name Priority: Priority (1: do first, 2: urgent, 3: important, 4: unset) Due: Date Status: Section (Done: completed, Obsolete: deleted) <page_link>: Description (read-only) Todoist ID: <task_id> Current limitations Changes on the same task cannot be made simultaneously in both systems within a 15-20 second time frame Subtasks are not linked automatically to their parent yet Recurring tasks are not supported yet Tasks names do not support URL’s yet Prerequisites Notion A database must already exist (get a basic template here) with the following properties (case matters!): Text: "Name" Status: "Status", containing at least the options "Backlog", "In progress", "Done", "Obsolete" Select: "Priority", containing the options "do first", "urgent", "important" Date: "Due" Checkbox: "Focus" Text: "Todoist ID" Todoist A project must already exist with the same sections like defined as Status in Notion (except Done and Obsolete) Redis Create a Free Redis Cloud instance or self-host Setup The setup involves quite a lot of steps, yet many of them can be automated for business internal purposes. Just follow the video or do the following steps: Setup credentials for Notion (access token), Todoist (access token) and Redis - you can also create empty credentials and populate these later during further setup Clone this workflow by clicking the "Use workflow" button and then choosing your n8n instance - otherwise you need to map the credentials of many nodes. Follow the instructions described within the bundle of sticky notes on the top left of the workflow How to use You can apply changes (create, update, delete) to tasks both in Notion and Todoist which then get synced over within a couple of seconds (this is handled by the differential realtime sync) The daily running full sync, resolves possible discrepancies in Todoist and sends a summary via email, if anything needed to be updated. In case that contains an unintended change, you can jump to the Task from the email directly to fix it manually.
octionic
Mario

More AI workflow templates

OpenAI Chat Model node
SerpApi (Google Search) node

AI agent chat

This workflow employs OpenAI's language models and SerpAPI to create a responsive, intelligent conversational agent. It comes equipped with manual chat triggers and memory buffer capabilities to ensure seamless interactions. To use this template, you need to be on n8n version 1.50.0 or later.
n8n-team
n8n Team
HTTP Request node
Merge node
+7

Scrape and summarize webpages with AI

This workflow integrates both web scraping and NLP functionalities. It uses HTML parsing to extract links, HTTP requests to fetch essay content, and AI-based summarization using GPT-4o. It's an excellent example of an end-to-end automated task that is not only efficient but also provides real value by summarizing valuable content. Note that to use this template, you need to be on n8n version 1.50.0 or later.
n8n-team
n8n Team
HTTP Request node
Markdown node
+5

AI agent that can scrape webpages

⚙️🛠️🚀🤖🦾 This template is a PoC of a ReAct AI Agent capable of fetching random pages (not only Wikipedia or Google search results). On the top part there's a manual chat node connected to a LangChain ReAct Agent. The agent has access to a workflow tool for getting page content. The page content extraction starts with converting query parameters into a JSON object. There are 3 pre-defined parameters: url** – an address of the page to fetch method** = full / simplified maxlimit** - maximum length for the final page. For longer pages an error message is returned back to the agent Page content fetching is a multistep process: An HTTP Request mode tries to get the page content. If the page content was successfuly retrieved, a series of post-processing begin: Extract HTML BODY; content Remove all unnecessary tags to recude the page size Further eliminate external URLs and IMG scr values (based on the method query parameter) Remaining HTML is converted to Markdown, thus recuding the page lengh even more while preserving the basic page structure The remaining content is sent back to an Agent if it's not too long (maxlimit = 70000 by default, see CONFIG node). NB: You can isolate the HTTP Request part into a separate workflow. Check the Workflow Tool description, it guides the agent to provide a query string with several parameters instead of a JSON object. Please reach out to Eduard is you need further assistance with you n8n workflows and automations! Note that to use this template, you need to be on n8n version 1.19.4 or later.
eduard
Eduard
Merge node
Telegram node
Telegram Trigger node
+2

Telegram AI Chatbot

The workflow starts by listening for messages from Telegram users. The message is then processed, and based on its content, different actions are taken. If it's a regular chat message, the workflow generates a response using the OpenAI API and sends it back to the user. If it's a command to create an image, the workflow generates an image using the OpenAI API and sends the image to the user. If the command is unsupported, an error message is sent. Throughout the workflow, there are additional nodes for displaying notes and simulating typing actions.
eduard
Eduard
HTTP Request node
WhatsApp Business Cloud node
+10

Building Your First WhatsApp Chatbot

This n8n template builds a simple WhatsApp chabot acting as a Sales Agent. The Agent is backed by a product catalog vector store to better answer user's questions. This template is intended to help introduce n8n users interested in building with WhatsApp. How it works This template is in 2 parts: creating the product catalog vector store and building the WhatsApp AI chatbot. A product brochure is imported via HTTP request node and its text contents extracted. The text contents are then uploaded to the in-memory vector store to build a knowledgebase for the chatbot. A WhatsApp trigger is used to capture messages from customers where non-text messages are filtered out. The customer's message is sent to the AI Agent which queries the product catalogue using the vector store tool. The Agent's response is sent back to the user via the WhatsApp node. How to use Once you've setup and configured your WhatsApp account and credentials First, populate the vector store by clicking the "Test Workflow" button. Next, activate the workflow to enable the WhatsApp chatbot. Message your designated WhatsApp number and you should receive a message from the AI sales agent. Tweak datasource and behaviour as required. Requirements WhatsApp Business Account OpenAI for LLM Customising this workflow Upgrade the vector store to Qdrant for persistance and production use-cases. Handle different WhatsApp message types for a more rich and engaging experience for customers.
jimleuk
Jimleuk
Google Drive node
Binary Input Loader node
Embeddings OpenAI node
OpenAI Chat Model node
+5

Ask questions about a PDF using AI

The workflow first populates a Pinecone index with vectors from a Bitcoin whitepaper. Then, it waits for a manual chat message. When received, the chat message is turned into a vector and compared to the vectors in Pinecone. The most similar vectors are retrieved and passed to OpenAI for generating a chat response. Note that to use this template, you need to be on n8n version 1.19.4 or later.
davidn8n
David Roberts

Implement complex processes faster with n8n

red icon yellow icon red icon yellow icon