Back to Templates
This workflow introduces beginners to one of the most fundamental concepts in n8n: looping over items. Using a simple use case—generating LinkedIn captions for content ideas—it demonstrates how to split a dataset into individual items, process them with AI, and collect the output for review or export.
Manual Trigger (Run Workflow)
Create Random Data (Code)
return [
{
json: {
row_number: 2,
id: 1,
Date: '2025-07-30',
idea: 'n8n rises to the top',
caption: '',
complete: ''
}
},
{
json: {
row_number: 3,
id: 2,
Date: '2025-07-31',
idea: 'n8n nodes',
caption: '',
complete: ''
}
},
{
json: {
row_number: 4,
id: 3,
Date: '2025-08-01',
idea: 'n8n use cases for marketing',
caption: '',
complete: ''
}
}
];
Loop Over Items (SplitInBatches)
Create Captions (LangChain Agent)
idea: {{ $json.idea }}
You are a helpful assistant creating captions for a LinkedIn post. Please create a LinkedIn caption for the idea.
Tool: Inject Creativity (LangChain Tool)
Output Table (Set)
idea
: ={{ $('Create Random Data').item.json.idea }}
output
: ={{ $json.output }}
This workflow demonstrates:
Beginners will understand how item-level processing works in n8n and how powerful looping combined with AI can be.
Robert Breen
Automation Consultant | AI Workflow Designer | n8n Expert
📧 [email protected]
🌐 ynteractive.com
🔗 LinkedIn
n8n
loops
OpenAI
LangChain
workflow
training
beginner
LinkedIn automation
caption generator