This workflow offers an effective way to handle a chatbot's functionality, making use of multiple tools for information retrieval, conversation context storage, and message sending. It's a setup tailored for a Slack environment, aiming to offer an interactive, AI-driven chatbot experience.
Note that to use this template, you need to be on n8n version 1.19.4 or later.
This n8n workflow demonstrates how to automate customer interactions and appointment management via WhatsApp Business bot.
After submitting a Google Form, the user receives a notification via WhatsApp. These notifications are sent via a template message.
In case user sends a message to the bot, the text and user data is stored in Google Sheets.
To reply back to the user, fill in the ReplyText column and change the Status to 'Ready'. In a few seconds n8n will fetch the unsent replies and deliver them one by one via WhatsApp Business node.
Customize this workflow to fit your specific needs, connect different online services and enhance your customer communication! 🎉
Setup Instructions
To get this workflow up and running, you'll need to:
👇 Create a WhatsApp template message on the Meta Business portal.
Obtain an Access Token and WhatsApp Business Account ID from the Meta Developers Portal. This is needed for the WhatsApp Business Node to send messages.
Set up a WhatsApp Trigger node with App ID and App Secret from the Meta Developers Portal.
Right after that copy the WhatsApp Trigger URL and add it as a Callback URL in the Meta Developers Portal. This trigger is needed to receive incoming messages and their status updates.
Connect your Google Sheets account for data storage and management. Check out the documentation page.
⚠️ Important Notes
WhatsApp allows automatic custom text messages only within 24 hours of the last user message. Outside with time frame only approved template messages can be sent.
The workflow uses a Google Sheet to manage form submissions, incoming messages and prepare responses. You can replace these nodes and connect the WhatsApp bot with other systems.
A robust n8n workflow designed to enhance Telegram bot functionality for user management and broadcasting. It facilitates automatic support ticket creation, efficient user data storage in Redis, and a sophisticated system for message forwarding and broadcasting.
How It Works
Telegram Bot Setup: Initiate the workflow with a Telegram bot configured for handling different chat types (private, supergroup, channel).
User Data Management: Formats and updates user data, storing it in a Redis database for efficient retrieval and management.
Support Ticket Creation: Automatically generates chat tickets for user messages and saves the corresponding topic IDs in Redis.
Message Forwarding: Forwards new messages to the appropriate chat thread, or creates a new thread if none exists.
Support Forum Management: Handles messages within a support forum, differentiating between various chat types and user statuses.
Broadcasting System: Implements a broadcasting mechanism that sends channel posts to all previous bot users, with a system to filter out blocked users.
Blocked User Management: Identifies and manages blocked users, preventing them from receiving broadcasted messages.
Versatile Channel Handling: Ensures that messages from verified channels are properly managed and broadcasted to relevant users.
Set Up Steps
Estimated Time**: Around 30 minutes.
Requirements**: A Telegram bot, a Redis database, and Telegram group/channel IDs are necessary.
Configuration**: Input the Telegram bot token and relevant group/channel IDs. Configure message handling and user data processing according to your needs.
Detailed Instructions**: Sticky notes within the workflow provide extensive setup information and guidance.
Live Demo Workflow
Bot: Telegram Bot Link (Click here)
Support Group: Telegram Group Link (Click here)
Broadcasting Channel: Telegram Channel Link (Click here)
Keywords: n8n workflow, Telegram bot, chat ticket system, Redis database, message broadcasting, user data management, support forum automation
This n8n workflow template lets teams easily generate a custom AI chat assistant based on the schema of any Notion database. Simply provide the Notion database URL, and the workflow downloads the schema and creates a tailored AI assistant designed to interact with that specific database structure.
Set Up
Watch this quick set up video 👇
Key Features
Instant Assistant Generation**: Enter a Notion database URL, and the workflow produces an AI assistant configured to the database schema.
Advanced Querying**: The assistant performs flexible queries, filtering records by multiple fields (e.g., tags, names). It can also search inside Notion pages to pull relevant content from specific blocks.
Schema Awareness**: Understands and interacts with various Notion column types like text, dates, and tags for accurate responses.
Reference Links**: Each query returns direct links to the exact Notion pages that inform the assistant’s response, promoting transparency and easy access.
Self-Validation**: The workflow has logic to check the generated assistant, and if any errors are detected, it reruns the agent to fix them.
Ideal for
Product Managers**: Easily access and query product data across Notion databases.
Support Teams**: Quickly search through knowledge bases for precise information to enhance support accuracy.
Operations Teams**: Streamline access to HR, finance, or logistics data for fast, efficient retrieval.
Data Teams**: Automate large dataset queries across multiple properties and records.
How It Works
This AI assistant leverages two HTTP request tools—one for querying the Notion database and another for retrieving data within individual pages. It’s powered by the Anthropic LLM (or can be swapped for GPT-4) and always provides reference links for added transparency.
With this workflow you get a fully automated AI powered Support-Agent for your WooCommerce webshop. It allows customers to request information about things like:
the status of their order
the ordered products
shipping and billing address
current DHL shipping status
How it works
The workflow receives chat messages from an in a website integrated chat. For security and data-privacy reasons, does the website transmit the email address of the user encrypted with the requests. That ensures that user can just request the information about their own orders.
An AI agent with a custom tool supplies the needed information. The tool calls a sub-workflow (in this case, in the same workflow for convenience) to retrieve the required information. This includes the full information of past orders plus the shipping information from DHL.
If otherr shipping providers are used it should be simple to adjust the workflow to query information from other APIs like UPS, Fedex or others.
This n8n template is designed to assist and improve customer support team member capacity by automating the resolution of long-lived and forgotten JIRA issues.
How it works
Schedule Trigger runs daily to check for long-lived unresolved issues and imports them into the workflow.
Each Issue is handled as a separate subworkflow by using an execute workflow node. This allows parallel processing.
A report is generated from the issue using its comment history allowing the issue to be classified by AI - determining the state and progress of the issue.
If determined to be resolved, sentiment analysis is performed to track customer satisfaction. If negative, a slack message is sent to escalate, otherwise the issue is closed automatically.
If no response has been initiated, an AI agent will attempt to search and resolve the issue itself using similar resolved issues or from the notion database. If a solution is found, it is posted to the issue and closed.
If the issue is blocked and waiting for responses, then a reminder message is added.
How to use
This template searches for JIRA issues which are older than 7 days which are not in the "Done" status. Ensure there are some issues that meet this criteria otherwise adjust the search query to suit.
Works best if you frequently have long-lived issues that need resolving.
Ensure the notion tool is configured as to not read documents you didn't intend it to ie. private and/or internal documentation.
Requirements
JIRA for issues management
OpenAI for LLM
Slack for notifications
Customising this workflow
Why not try classifying issues as they are created? One use-case may be for quality control such as ensuring reporting criteria is adhered to, summarising and rephrasing issue for easier reading or adjusting priority.
This n8n workflow demonstrates how to automate customer interactions and appointment management via WhatsApp Business bot.
After submitting a Google Form, the user receives a notification via WhatsApp. These notifications are sent via a template message.
In case user sends a message to the bot, the text and user data is stored in Google Sheets.
To reply back to the user, fill in the ReplyText column and change the Status to 'Ready'. In a few seconds n8n will fetch the unsent replies and deliver them one by one via WhatsApp Business node.
Customize this workflow to fit your specific needs, connect different online services and enhance your customer communication! 🎉
Setup Instructions
To get this workflow up and running, you'll need to:
👇 Create a WhatsApp template message on the Meta Business portal.
Obtain an Access Token and WhatsApp Business Account ID from the Meta Developers Portal. This is needed for the WhatsApp Business Node to send messages.
Set up a WhatsApp Trigger node with App ID and App Secret from the Meta Developers Portal.
Right after that copy the WhatsApp Trigger URL and add it as a Callback URL in the Meta Developers Portal. This trigger is needed to receive incoming messages and their status updates.
Connect your Google Sheets account for data storage and management. Check out the documentation page.
⚠️ Important Notes
WhatsApp allows automatic custom text messages only within 24 hours of the last user message. Outside with time frame only approved template messages can be sent.
The workflow uses a Google Sheet to manage form submissions, incoming messages and prepare responses. You can replace these nodes and connect the WhatsApp bot with other systems.
This n8n workflow demonstrates how you can summarise and automate post-meeting actions from video transcripts fed into an AI Agent.
Save time between meetings by allowing AI handle the chores of organising follow-up meetings and invites.
How it works
This workflow scans for the calendar for client or team meetings which were held online. * Attempts will be made to fetch any recorded transcripts which are then sent to the AI agent.
The AI agent summarises and identifies if any follow-on meetings are required.
If found, the Agent will use its Calendar Tool to to create the event for the time, date and place for the next meeting as well as add known attendees.
Requirements
Google Calendar and the ability to fetch Meeting Transcripts (There is a special OAuth permission for this action!)
OpenAI account for access to the LLM.
Customising the workflow
This example only books follow-on meetings but could be extended to generate reports or send emails.
This n8n workflow template lets teams easily generate a custom AI chat assistant based on the schema of any Notion database. Simply provide the Notion database URL, and the workflow downloads the schema and creates a tailored AI assistant designed to interact with that specific database structure.
Set Up
Watch this quick set up video 👇
Key Features
Instant Assistant Generation**: Enter a Notion database URL, and the workflow produces an AI assistant configured to the database schema.
Advanced Querying**: The assistant performs flexible queries, filtering records by multiple fields (e.g., tags, names). It can also search inside Notion pages to pull relevant content from specific blocks.
Schema Awareness**: Understands and interacts with various Notion column types like text, dates, and tags for accurate responses.
Reference Links**: Each query returns direct links to the exact Notion pages that inform the assistant’s response, promoting transparency and easy access.
Self-Validation**: The workflow has logic to check the generated assistant, and if any errors are detected, it reruns the agent to fix them.
Ideal for
Product Managers**: Easily access and query product data across Notion databases.
Support Teams**: Quickly search through knowledge bases for precise information to enhance support accuracy.
Operations Teams**: Streamline access to HR, finance, or logistics data for fast, efficient retrieval.
Data Teams**: Automate large dataset queries across multiple properties and records.
How It Works
This AI assistant leverages two HTTP request tools—one for querying the Notion database and another for retrieving data within individual pages. It’s powered by the Anthropic LLM (or can be swapped for GPT-4) and always provides reference links for added transparency.
What this workflow does:
This flow uses an AI node to generate Seed Keywords to focus SEO efforts on based on your ideal customer profile. You can use these keywords to form part of your SEO strategy.
Outputs:
List of 20 Seed Keywords
Setup
Fill the Set Ideal Customer Profile (ICP)
Connect with your credentials
Replace the Connect to your own database with your own database
Pre-requisites / Dependencies
You know your ideal customer profile (ICP)
An AI API account (either OpenAI or Anthropic recommended)
Made by Simon @ automake.io
This n8n workflow shows how using multimodal LLMs with AI vision can tackle tricky image validation tasks which are near impossible to achieve with code and often impractical to be done by humans at scale.
You may need image validation when users submitted photos or images are required to meet certain criteria before being accepted. A wine review website may require users only submit photos of wine with labels, a bank may require account holders to submit scanned documents for verification etc.
In this demonstration, our scenario will be to analyse a set of portraits to verify if they meet the criteria for valid passport photos according to the UK government website (https://www.gov.uk/photos-for-passports).
How it works
Our set of portaits are jpg files downloaded from our Google Drive using the Google Drive node.
Each image is resized using the Edit Image node to ensure a balance between resolution and processing speed.
Using the Basic LLM node, we'll define a "user message" option with the type of binary (data). This will allow us to pass our portrait to the LLM as an input.
With our prompt containing the criteria pulled off the passport photo requirements webpage, the LLM is able to validate the photo does or doesn't meet its criteria.
A structured output parser is used to structure the LLM's response to a JSON object which has the "is_valid" boolean property. This can be useful to further extend the workflow.
Requirements
Google Gemini API key
Google Drive account
Customising this workflow
Not using Gemini? n8n's LLM node works with any compatible multimodal LLM so feel free to swap Gemini out for OpenAI's GPT4o or Antrophic's Claude Sonnet.
Don't need to validate portraits? Try other use cases such as document classification, security footage analysis, people tagging in photos and more.
Simple workflow which allows to receive data from a Google Sheet via "REST" endpoint.
Wait for Webhook Call
Get data from Google Sheet
Return data
Example Sheet: https://docs.google.com/spreadsheets/d/17fzSFl1BZ1njldTfp5lvh8HtS0-pNXH66b7qGZIiGRU