Back to Integrations
integration integration
integration Default Data Loader node

Integrate LangChain Default Data Loader in your LLM apps and 422+ apps and services

Use Default Data Loader to easily build AI-powered applications with LangChain and integrate them with 422+ apps and services. n8n lets you seamlessly import data from files, websites, or databases into your LLM-powered application and create automated scenarios.

Popular ways to use Default Data Loader integration

Qdrant Vector Store node
Mistral Cloud Chat Model node
Embeddings Mistral Cloud node
Default Data Loader node
Split Out node
+17

Breakdown Documents into Study Notes using Templating MistralAI and Qdrant

This n8n workflow takes in a document such as a research paper, marketing or sales deck or company filings, and breaks them down into 3 templates: study guide, briefing doc and timeline. These templates are designed to help a student, associate or clerk quickly summarise, learn and understand the contents to be more productive. Study guide - a short quiz of questions and answered generated by the AI Agent using the contents of the document. Briefing Doc - key information and insights are extracted by the AI into a digestable form. Timeline - key events, durations and people are identified and listed into a simple to understand timeline by the AI How it works A local file trigger watches a local network directory for new documents. New documents are imported into the workflow, its contents extracted and vectorised into a Qdrant vector store to build a mini-knowledgebase. The document then passes through a series of template generating prompts where the AI will perform "research" on the knowledgebase to generate the template contents. Generated study guide, briefing and timeline documents are exported to a designated folder for the user. Requirements Self-hosted version of n8n. Qdrant instance for knowledgebase. Mistral.ai account for embeddings and AI model. Customising your workflow Try adding your own templates or adjusting the existing templates to suit your unique use-case. Anything is quite possible and limited only by your imagination!
jimleuk
Jimleuk
Qdrant Vector Store node
Mistral Cloud Chat Model node
Embeddings Mistral Cloud node
Default Data Loader node
HTML node
+12

Recipe Recommendations with Qdrant and Mistral

This n8n workflow demonstrates creating a recipe recommendation chatbot using the Qdrant vector store recommendation API. Use this example to build recommendation features in your AI Agents for your users. How it works For our recipes, we'll use HelloFresh's weekly course and recipes for data. We'll scrape the website for this data. Each recipe is split, vectorised and inserted into a Qdrant Collection using Mistral Embeddings Additionally the whole recipe is stored in a SQLite database for later retrieval. Our AI Agent is setup to recommend recipes from our Qdrant vector store. However, instead of the default similarity search, we'll use the Recommendation API instead. Qdrant's Recommendation API allows you to provide a negative prompt; in our case, the user can specify recipes or ingredients to avoid. The AI Agent is now able to suggest a recipe recommendation better suited for the user and increase customer satisfaction. Requirements Qdrant vector store instance to save the recipes Mistral.ai account for embeddings and LLM agent Customising the workflow This workflow can work for a variety of different audiences. Try different sets of data such as clothes, sports shoes, vehicles or even holidays.
jimleuk
Jimleuk
Default Data Loader node
Summarize node
Supabase Vector Store node
Embeddings OpenAI node
Notion Trigger node
+4

Store Notion's Pages as Vector Documents into Supabase with OpenAI

Workflow updated on 17/06/2024:** Added 'Summarize' node to avoid creating a row for each Notion content block in the Supabase table.* Store Notion's Pages as Vector Documents into Supabase This workflow assumes you have a Supabase project with a table that has a vector column. If you don't have it, follow the instructions here: Supabase Vector Columns Guide Workflow Description This workflow automates the process of storing Notion pages as vector documents in a Supabase database with a vector column. The steps are as follows: Notion Page Added Trigger: Monitors a specified Notion database for newly added pages. You can create a specific Notion database where you copy the pages you want to store in Supabase. Node: Page Added in Notion Database Retrieve Page Content: Fetches all block content from the newly added Notion page. Node: Get Blocks Content Filter Non-Text Content: Excludes blocks of type "image" and "video" to focus on textual content. Node: Filter - Exclude Media Content Summarize Content: Concatenates the Notion blocks content to create a single text for embedding. Node: Summarize - Concatenate Notion's blocks content Store in Supabase: Stores the processed documents and their embeddings into a Supabase table with a vector column. Node: Store Documents in Supabase Generate Embeddings: Utilizes OpenAI's API to generate embeddings for the textual content. Node: Generate Text Embeddings Create Metadata and Load Content: Loads the block content and creates associated metadata, such as page ID and block ID. Node: Load Block Content & Create Metadata Split Content into Chunks: Divides the text into smaller chunks for easier processing and embedding generation. Node: Token Splitter
dataki
Dataki
OpenAI node
Default Data Loader node
Embeddings OpenAI node
Google Drive node
Merge node
+6

Generating Image Embeddings via Textual Summarisation

This n8n template demonstrates an approach to image embeddings for purpose of building a quick image contextual search. Use-cases could for a personal photo library, product recommendations or searching through video footage. How it works A photo is imported into the workflow via Google Drive. The photo is processed by the edit image node to extract colour information. This information forms part of our semantic metadata used to identify the image. The photo is also processed by a vision-capable model which analyses the image and returns a short description with semantic keywords. Both pieces of information about the image are combined with the metadata of the image to form a document describing the image. This document is then inserted into our vector store as a text embedding which is associated with our image. From here, the user can query the vector store as they would any document and the relevant image references and/or links should be returned. Requirements Google account to download image files from Google Drive. OpenAI account for the Vision-capable AI and Embedding models. Customise this workflow Text summarisation is just one of many techniques to generate image embeddings. If the results are unsatisfactory, there are dedicated image embedding models such as Google's vertex AI multimodal embeddings.
jimleuk
Jimleuk
Qdrant Vector Store node
Embeddings Mistral Cloud node
Default Data Loader node
Split Out node
Extract from File node
+16

Build a Tax Code Assistant with Qdrant, Mistral.ai and OpenAI

This n8n workflows builds another example of creating a knowledgebase assistant but demonstrates how a more deliberate and targeted approach to ingesting the data can produce much better results for your chatbot. In this example, a government tax code policy document is used. Whilst we could split the document into chunks by content length, we often lose the context of chapters and sections which may be required by the user. Our approach then is to first split the document into chapters and sections before importing into our vector store. Additionally, using metadata correctly is key to allow filtering and scoped queries. Example Human: "Tell me about what the tax code says about cargo for intentional commerce?" AI: "Section 11.25 of the Texas Property Tax Code pertains to "MARINE CARGO CONTAINERS USED EXCLUSIVELY IN INTERNATIONAL COMMERCE." In this section, a person who is a citizen of a foreign country or an en..." How it works The tax code policy document is downloaded as a zip file from the government website and its pages are extracted as separate chapters. Each chapter is then parsed and split into its sections using data manipulation expressions. Each section is then inserted into our Qdrant vector store tagged with its source, chapter and section numbers as metadata. When our AI Agent needs to retrieve data from our vector store, we use a custom workflow tool to perform the query to Qdrant. Because we're relying on Qdrant's advanced filtering capabilities, we perform the search using the Qdrant API rather than the Qdrant node. When the AI Agent, needs to pull full wording or extracts, we can use Qdrant's scroll API and metadata filtering to do so. This makes Qdrant behave like a key-value store for our document. Requirements A Qdrant instance is required for the vector store and specifically for it's filtering functionality. Mistral.ai account for Embeddings and AI models. Customising this workflow Depending on your use-case, consider returning actual PDF pages (or links) to the user for the extra confirmation and to build trust. Not using Mistral? You are able to replace but note to match the distance and dimension size of Qdrant collection to your chosen embedding model.
jimleuk
Jimleuk
Default Data Loader node
Pinecone Vector Store node
OpenAI Chat Model node
Embeddings OpenAI node
Code node
+8

Chat with PDF docs using AI (quoting sources)

This workflow allows you to ask questions about a PDF document. The answers are provided by an AI model of your choice, and the answer includes a citation pointing to the information it used. You can use n8n’s built-in chat interface to ask the questions, or you could customise this workflow to use another one (e.g. Slack, Teams, etc.) Example The workflow is set up with the Bitcoin whitepaper. So you could ask things like: Question: “Which email provider does the creator of Bitcoin use?“ Answer: “GMX [Bitcoin whitepaper.pdf, lines 1-35]” Requirements A Pinecone account (they have a free tier at the time of writing that is easily enough for this workflow) Access to a large language model (e.g. an OpenAI account) Customizing this workflow The workflow only reads in one document, but you could customise it to read in all the documents in a folder (or more). The workflow is set up to use GPT 3.5, but you could swap that out for any other model (including self-hosted ones).
davidn8n
David Roberts
Default Data Loader node

About Default Data Loader

Related categories

Similar integrations

  • Pinecone: Insert node
  • Anthropic Chat Model node
  • Wikipedia node
  • Google Gemini Chat Model node
  • Google Vertex Chat Model node
  • Postgres Chat Memory node

Over 3000 companies switch to n8n every single week

Connect Default Data Loader with your company’s tech stack and create automation workflows