Back to Integrations
integration integration
integration Qdrant Vector Store node

Integrate LangChain Qdrant Vector Store in your LLM apps and 422+ apps and services

Use Qdrant Vector Store to easily build AI-powered applications with LangChain and integrate them with 422+ apps and services. n8n lets you seamlessly import data from files, websites, or databases into your LLM-powered application and create automated scenarios.

Popular ways to use Qdrant Vector Store integration

HTTP Request node
Merge node
+12

Recipe Recommendations with Qdrant and Mistral

This n8n workflow demonstrates creating a recipe recommendation chatbot using the Qdrant vector store recommendation API. Use this example to build recommendation features in your AI Agents for your users. How it works For our recipes, we'll use HelloFresh's weekly course and recipes for data. We'll scrape the website for this data. Each recipe is split, vectorised and inserted into a Qdrant Collection using Mistral Embeddings Additionally the whole recipe is stored in a SQLite database for later retrieval. Our AI Agent is setup to recommend recipes from our Qdrant vector store. However, instead of the default similarity search, we'll use the Recommendation API instead. Qdrant's Recommendation API allows you to provide a negative prompt; in our case, the user can specify recipes or ingredients to avoid. The AI Agent is now able to suggest a recipe recommendation better suited for the user and increase customer satisfaction. Requirements Qdrant vector store instance to save the recipes Mistral.ai account for embeddings and LLM agent Customising the workflow This workflow can work for a variety of different audiences. Try different sets of data such as clothes, sports shoes, vehicles or even holidays.
jimleuk
Jimleuk
Google Sheets node
HTTP Request node
+12

Survey Insights with Qdrant, Python and Information Extractor

This n8n template is one of a 3-part series exploring use-cases for clustering vector embeddings: Survey Insights Customer Insights Community Insights This template demonstrates the Survey Insights scenario where survey participant responses can be quickly grouped by similarity and an AI agent can generate insights on those groupings. With this workflow, researchers can save days and even weeks of work breaking down cohorts of participants and identify frequently mentioned positives and negatives. Sample Output: https://docs.google.com/spreadsheets/d/e/2PACX-1vT6m8XH8JWJTUAfwojc68NAUGC7q0lO7iV738J7aO5fuVjiVzdTRRPkMmT1C4N8TwejaiT0XrmF1Q48/pubhtml# How it works All survey questions and responses are imported from a Google Sheet. Responses are then inserted into a Qdrant collection carefully tagged with the question and survey metadata. For each question, all relevant response are put through a clustering algorithm using the Python Code node. The Qdrant points are returned in clustered groups. Each group is looped to fetch the payloads of the points and feed them to the AI agent to summarise and generate insights for. The resulting insights and raw responses are then saved to the Google Spreadsheet for further analysis by the researcher. Requirements Survey data and format as shown in the attached google sheet. Qdrant Vectorstore for storing embeddings. OpenAI account for embeddings and LLM. Customising the Template Adjust clustering parameters which make sense for your data. Add more clusters for open-ended questions and less clusters when responses are multiple choice.
jimleuk
Jimleuk
Google Sheets node
HTTP Request node
+11

Customer Insights with Qdrant, Python and Information Extractor

This n8n template is one of a 3-part series exploring use-cases for clustering vector embeddings: Survey Insights Customer Insights Community Insights This template demonstrates the Customer Insights scenario where Trustpilot reviews can be quickly grouped by similarity and an AI agent can generate insights on those groupings. With this workflow, marketers can save days and even weeks of work breaking down their own or competitor reviews and identify frequently mentioned positives and negatives. Sample Output: https://docs.google.com/spreadsheets/d/e/2PACX-1vQ6ipJnXWXgr5wlUJnhioNpeYrxaIpsRYZCwN3C-fFXumkbh9TAsA_JzE0kbv7DcGAVIP7az0L46_2P/pubhtml How it works Trustpilot reviews are scraped for a particular company using the HTTP request node. Reviews are then inserted into a Qdrant collection carefully tagged with the question and Trustpilot metadata. Reviews are fetched and put through a clustering algorithm using the Python Code node. The Qdrant points are returned in clustered groups. Each group is looped to fetch the payloads of the points and feed them to the AI agent to summarise and generate insights for. The resulting insights and raw responses are then saved to the Google Spreadsheet for further analysis by the marketer. Requirements Qdrant Vectorstore for storing embeddings. OpenAI account for embeddings and LLM. Customising the Template Adjust clustering parameters which make sense for your data. Consider expanding date range of reviews for insights over common intervals: 3mth, 6mth and YTD.
jimleuk
Jimleuk
GitHub node
HTTP Request node
Merge node
+14

Building RAG Chatbot for Movie Recommendations with Qdrant and Open AI

Create a recommendation tool without hallucinations based on RAG with the Qdrant Vector database. This example is based on movie recommendations on the IMDB-top1000 dataset. You can provide your wishes and your "big no's" to the chatbot, for example: "A movie about wizards but not Harry Potter", and get top-3 recommendations. How it works Upload IMDB-1000 dataset to Qdrant Vector Store, embedding movie descriptions with OpenAI; Set up an AI agent with a chat. This agent will call a workflow tool to get movie recommendations based on a request written in the chat; Create a workflow which calls Qdrant's Recommendation API to retrieve top-3 recommendations of movies based on your positive and negative examples. Set Up Steps You'll need to create a free tier Qdrant Cluster (Qdrant can also be used locally; it's open-sourced) and set up API credentials You'll OpenAI credentials You'll need GitHub credentials & to upload the IMDB Kaggle dataset to your GitHub.
mrscoopers
Evgeniya
Google Sheets node
HTTP Request node
Hacker News node
+11

Community Insights using Qdrant, Python and Information Extractor

This n8n template is one of a 3-part series exploring use-cases for clustering vector embeddings: Survey Insights Customer Insights Community Insights This template demonstrates the Community Insights scenario where HN commments can be quickly grouped by similarity and an AI agent can generate insights on those groupings. With this workflow, Researchers or HN users can quickly breakdown community consensus on a particular topic and identify frequently mentioned positives and negatives. Sample Output: https://docs.google.com/spreadsheets/d/e/2PACX-1vQXaQU9XxsxnUIIeqmmf1PuYRuYtwviVXTv6Mz9Vo6_a4ty-XaJHSeZsptjWXS3wGGDG8Z4u16rvE7l/pubhtml How it works HN comments are imported via the Hacknews API node. Comments are then inserted into a Qdrant collection carefully tagged with the Hackernews API metadata. Comments are then fetched and are put through a clustering algorithm using the Python Code node. The Qdrant points are returned in clustered groups. Each group is looped to fetch the payloads of the points and feed them to the AI agent to summarise and generate insights for. The resulting insights and raw responses are then saved to the Google Spreadsheet for further analysis by the researcher or the HN user. Requirements Works best with lots of comments! Qdrant Vectorstore for storing embeddings. OpenAI account for embeddings and LLM. Customising the Template Adjust clustering parameters which make sense for your data. Adjust sentimentality setting if comments are overwhelmingly negative at times.
jimleuk
Jimleuk
HTTP Request node
+16

Build a Tax Code Assistant with Qdrant, Mistral.ai and OpenAI

This n8n workflows builds another example of creating a knowledgebase assistant but demonstrates how a more deliberate and targeted approach to ingesting the data can produce much better results for your chatbot. In this example, a government tax code policy document is used. Whilst we could split the document into chunks by content length, we often lose the context of chapters and sections which may be required by the user. Our approach then is to first split the document into chapters and sections before importing into our vector store. Additionally, using metadata correctly is key to allow filtering and scoped queries. Example Human: "Tell me about what the tax code says about cargo for intentional commerce?" AI: "Section 11.25 of the Texas Property Tax Code pertains to "MARINE CARGO CONTAINERS USED EXCLUSIVELY IN INTERNATIONAL COMMERCE." In this section, a person who is a citizen of a foreign country or an en..." How it works The tax code policy document is downloaded as a zip file from the government website and its pages are extracted as separate chapters. Each chapter is then parsed and split into its sections using data manipulation expressions. Each section is then inserted into our Qdrant vector store tagged with its source, chapter and section numbers as metadata. When our AI Agent needs to retrieve data from our vector store, we use a custom workflow tool to perform the query to Qdrant. Because we're relying on Qdrant's advanced filtering capabilities, we perform the search using the Qdrant API rather than the Qdrant node. When the AI Agent, needs to pull full wording or extracts, we can use Qdrant's scroll API and metadata filtering to do so. This makes Qdrant behave like a key-value store for our document. Requirements A Qdrant instance is required for the vector store and specifically for it's filtering functionality. Mistral.ai account for Embeddings and AI models. Customising this workflow Depending on your use-case, consider returning actual PDF pages (or links) to the user for the extra confirmation and to build trust. Not using Mistral? You are able to replace but note to match the distance and dimension size of Qdrant collection to your chosen embedding model.
jimleuk
Jimleuk

Supported modes

Get Many
Get many ranked documents from vector store for query
Insert Documents
Insert documents into vector store
Retrieve Documents (For Agent/Chain)
Retrieve documents from vector store to be used with AI nodes
Qdrant Vector Store node

About Qdrant Vector Store

Related categories

Similar integrations

  • JSON Input Loader node
  • Embeddings Google PaLM node
  • Embeddings Hugging Face Inference node
  • Embeddings Mistral Cloud node
  • Google PaLM Chat Model node
  • Google PaLM Language Model node
  • Groq Chat Model node
  • Cohere Model node

Over 3000 companies switch to n8n every single week

Connect Qdrant Vector Store with your company’s tech stack and create automation workflows