HTTP Request node
+9

Upload images to an S3 Bucket via a Slack Bot

Published 1 month ago

Template description

Upload Public-Facing Images to an S3 Cloudflare Bucket via Slack Modal

🛠 Who is this for?

This workflow is for teams that use Slack for internal communication and need a streamlined way to upload public-facing images to an S3 Cloudflare bucket. It's especially beneficial for DevOps, marketing, or content management teams who frequently share assets and require efficient cloud storage integration.


💡 What problem does this workflow solve?

Manually uploading images to cloud storage can be time-consuming and disruptive, especially if you're already working in Slack. This workflow automates the process, allowing you to upload images directly from Slack via a modal popup. It reduces friction and keeps your workflow within a single platform.


🔍 What does this workflow do?

This workflow connects Slack with an S3 Cloudflare bucket to simplify the image-uploading process:

  • Slack Modal Interaction: Users trigger a Slack modal to select images for upload.
  • Dynamic Folder Management: Choose to create a new folder or use an existing one for uploads.
  • S3 Integration: Automatically uploads the images to a specified S3 Cloudflare bucket.
  • Slack Confirmation: After upload, Slack sends a confirmation with the uploaded file URLs.

🚀 Setup Instructions

Prerequisites

  1. Slack Bot with the following permissions:
    • commands
    • files:write
    • files:read
    • chat:write
  2. Cloudflare S3 Credentials: Create an API token with write access to your S3 bucket.
  3. n8n Instance: Ensure n8n is properly set up with webhook capabilities.

Steps

  1. Configure Slack Bot:
    • Set up a Slack app and enable the Events API.
    • Add your n8n webhook URL to the Events Subscription section.
  2. Add Credentials:
    • Add your Slack API and S3 Cloudflare credentials to n8n.
  3. Customize the Workflow:
    • Open the Idea Selector Modal node and update folder options to suit your needs.
    • Update the Post Image to Channel node with your Slack channel ID.
  4. Deploy the Workflow:
    • Activate the workflow and test by triggering the Slack modal.

🛠 How to Customize This Workflow

Adjust the Slack Modal

You can modify the modal layout in the Idea Selector Modal node to add additional fields or adjust the styling.

Change the Bucket Structure

Update the Upload to S3 Bucket node to customize the folder paths or change naming conventions.


🔗 References and Helpful Links


📓 Workflow Notes

Key Features:

  • Slack Integration: Uses Slack modal interactions to streamline the upload process.
  • Cloud Storage: Automatically uploads to a Cloudflare S3 bucket.
  • User Feedback: Sends a Slack message with file URLs upon successful upload.

Setup Dependencies:

  • Slack API token
  • Cloudflare S3 credentials
  • n8n webhook configuration

Sticky Notes Included

Sticky notes are embedded within the workflow to guide you through configuration and explain node functionality.


🌟 Why Use This Workflow?

This workflow keeps your image-uploading process intuitive, efficient, and fully integrated with tools you already use. By leveraging n8n's flexibility, you can ensure smooth collaboration and quick sharing of public-facing assets without switching contexts.

Share Template

More DevOps workflow templates

HTTP Request node
Merge node
+13

AI Agent To Chat With Files In Supabase Storage

Video Guide I prepared a detailed guide explaining how to set up and implement this scenario, enabling you to chat with your documents stored in Supabase using n8n. Youtube Link Who is this for? This workflow is ideal for researchers, analysts, business owners, or anyone managing a large collection of documents. It's particularly beneficial for those who need quick contextual information retrieval from text-heavy files stored in Supabase, without needing additional services like Google Drive. What problem does this workflow solve? Manually retrieving and analyzing specific information from large document repositories is time-consuming and inefficient. This workflow automates the process by vectorizing documents and enabling AI-powered interactions, making it easy to query and retrieve context-based information from uploaded files. What this workflow does The workflow integrates Supabase with an AI-powered chatbot to process, store, and query text and PDF files. The steps include: Fetching and comparing files to avoid duplicate processing. Handling file downloads and extracting content based on the file type. Converting documents into vectorized data for contextual information retrieval. Storing and querying vectorized data from a Supabase vector store. File Extraction and Processing: Automates handling of multiple file formats (e.g., PDFs, text files), and extracts document content. Vectorized Embeddings Creation: Generates embeddings for processed data to enable AI-driven interactions. Dynamic Data Querying: Allows users to query their document repository conversationally using a chatbot. Setup N8N Workflow Fetch File List from Supabase: Use Supabase to retrieve the stored file list from a specified bucket. Add logic to manage empty folder placeholders returned by Supabase, avoiding incorrect processing. Compare and Filter Files: Aggregate the files retrieved from storage and compare them to the existing list in the Supabase files table. Exclude duplicates and skip placeholder files to ensure only unprocessed files are handled. Handle File Downloads: Download new files using detailed storage configurations for public/private access. Adjust the storage settings and GET requests to match your Supabase setup. File Type Processing: Use a Switch node to target specific file types (e.g., PDFs or text files). Employ relevant tools to process the content: For PDFs, extract embedded content. For text files, directly process the text data. Content Chunking: Break large text data into smaller chunks using the Text Splitter node. Define chunk size (default: 500 tokens) and overlap to retain necessary context across chunks. Vector Embedding Creation: Generate vectorized embeddings for the processed content using OpenAI's embedding tools. Ensure metadata, such as file ID, is included for easy data retrieval. Store Vectorized Data: Save the vectorized information into a dedicated Supabase vector store. Use the default schema and table provided by Supabase for seamless setup. AI Chatbot Integration: Add a chatbot node to handle user input and retrieve relevant document chunks. Use metadata like file ID for targeted queries, especially when multiple documents are involved. Testing Upload sample files to your Supabase bucket. Verify if files are processed and stored successfully in the vector store. Ask simple conversational questions about your documents using the chatbot (e.g., "What does Chapter 1 say about the Roman Empire?"). Test for accuracy and contextual relevance of retrieved results.
lowcodingdev
Mark Shcherbakov

Git backup of workflows and credentials

This creates a git backup of the workflows and credentials. It uses the n8n export command with git diff, so you can run as many times as you want, but only when there are changes they will create a commit. Setup You need some access to the server. Create a repository in some remote place to host your project, like Github, Gitlab, or your favorite private repo. Clone the repository in the server in a place that the n8n has access. In the example, it's the ., and the repository name is repo. Change it in the commands and in the workflow commands (you can set it as a variable in the wokflow). Checkout to another branch if you won't use the master one. cd . git clone repository Or you could git init and then add the remote (git remote add origin YOUR_REPO_URL), whatever pleases you more. As the server, check if everything is ok for beeing able to commit. Very likely you'll need to setup the user email and name. Try to create a commit, and push it to upstream, and everything you need (like config a user to comit) will appear in way. I strong suggest testing with exporting the commands to garantee it will work too. cd ./repo git commit -c "Initial commmit" --allow-empty -u is the same as --set-upstream git push -u origin master Testing to push to upstream with the first exported data npx n8n export:workflow --backup --output ./repo/workflows/ npx n8n export:credentials --backup --output repo/credentials/ cd ./repo git add . git commit -c "manual backup: first export" git push After that, if everything is ok, the workflow should work just fine. Adjustments Adjust the path in used in the workflow. See the the git -C PATH command is the same as cd PATH; git .... Also, adjust the cron to run as you need. As I said in the beginning, you can run it even for every minute, but it will create commits only when there are changes. Credentials encryption The default for exporting the credentials is to do them encrypted. You can add the flag --decrypted to the n8n export:credentials command if you need to save them in plain. But as general rule, it's better to save the encryption key, that you only need to do that once, and them export it safely encrypted.
allandaemon
Allan Daemon
Google Sheets node
HTTP Request node
Slack node
+4

Host your own Uptime Monitoring with Scheduled Triggers

This n8n workflow demonstrates how to build a simple uptime monitoring service using scheduled triggers. Useful for webmasters with a handful of sites who want a cost-effective solution without the need for all the bells and whistles. How it works Scheduled trigger reads a list of website urls in a Google Sheet every 5 minutes Each website url is checked using the HTTP node which determines if the website is either in the UP or DOWN state. An email and Slack message are sent for websites which are in the DOWN state. The Google Sheet is updated with the website's state and a log created. Logs can be used to determine total % of UP and DOWN time over a period. Requirements Google Sheet for storing websites to monitor and their states Gmail for email alerts Slack for channel alerts Customising the workflow Don't use Google Sheets? This can easily be exchanged with Excel or Airtable.
jimleuk
Jimleuk
OpenAI Chat Model node

AI Agent to chat with Supabase/PostgreSQL DB

Video Guide I prepared a detailed guide that showed the whole process of building a resume analyzer. Who is this for? This workflow is ideal for developers, data analysts, and business owners who want to enable conversational interactions with their database. It’s particularly useful for cases where users need to extract, analyze, or aggregate data without writing SQL queries manually. What problem does this workflow solve? Accessing and analyzing database data often requires SQL expertise or dedicated reports, which can be time-consuming. This workflow empowers users to interact with a database conversationally through an AI-powered agent. It dynamically generates SQL queries based on user requests, streamlining data retrieval and analysis. What this workflow does This workflow integrates OpenAI with a Supabase database, enabling users to interact with their data via an AI agent. The agent can: Retrieve records from the database. Extract and analyze JSON data stored in tables. Provide summaries, aggregations, or specific data points based on user queries. Dynamic SQL Querying: The agent uses user prompts to create and execute SQL queries on the database. Understand JSON Structure: The workflow identifies JSON schema from sample records, enabling the agent to parse and analyze JSON fields effectively. Database Schema Exploration: It provides the agent with tools to retrieve table structures, column details, and relationships for precise query generation. Setup Preparation Create Accounts: N8N: For workflow automation. Supabase: For database hosting and management. OpenAI: For building the conversational AI agent. Configure Database Connection: Set up a PostgreSQL database in Supabase. Use appropriate credentials (username, password, host, and database name) in your workflow. N8N Workflow AI agent with tools: Code Tool: Execute SQL queries based on user input. Database Schema Tool: Retrieve a list of all tables in the database. Use a predefined SQL query to fetch table definitions, including column names, types, and references. Table Definition: Retrieve a list of columns with types for one table.
lowcodingdev
Mark Shcherbakov
Merge node
Webhook node
+10

🦅 Get a bird's-eye view of your n8n instance with the Workflow Dashboard!

Using n8n a lot? Soar above the limitations of the default n8n dashboard! This template gives you an overview of your workflows, nodes, and tags – all in one place. 💪 Built using XML stylesheets and the Bootstrap 5 library, this workflow is self-contained and does not depend on any third-party software. 🙌 It generates a comprehensive overview JSON that can be easily integrated with other BI tools for further analysis and visualization. 📊 Reach out to Eduard if you need help adapting this workflow to your specific use-case! 🚀 Benefits: Workflow Summary** 📈: Instant overview of your workflows, active counts, and triggers. Left-Side Panel** 📋: Quick access to all your workflows, nodes, and tags for seamless navigation. Workflow Details** 🔬: Deep dive into each workflow's nodes, timestamps, and tags. Node Analysis** 🧩: Identify the most frequently used nodes across your workflows. Tag Organization** 🗂️: Workflows are grouped according to their tags. Visually Stunning** 🎨: Clean, intuitive, and easy-to-navigate dashboard design. XML & Bootstrap 5** 🛠️: Built using XML stylesheets and Bootstrap 5, ensuring a self-contained and responsive dashboard. No Dependencies** 🔒: The workflow does not rely on any third-party software. Bootstrap 5 files are loaded via CDN but can be delivered directly from your server. ⚠️ Important note for cloud users Since the cloud version doesn't support environmental variables, please make the following changes: get-nodes-via-jmespath node. Update the instance_url variable: enter your n8n URL instead of {{$env["N8N_PROTOCOL"]}}://{{$env["N8N_HOST"]}} Create HTML node. Please provide the n8n instance URL instead of {{ $env.WEBHOOK_URL }} 🌟Example: Check out our other workflows: n8n.io/creators/eduard n8n.io/creators/yulia
eduard
Eduard
Merge node
MySQL node
+9

Generate SQL queries from schema only - AI-powered

This workflow is a modification of the previous template on how to create an SQL agent with LangChain and SQLite. The key difference – the agent has access only to the database schema, not to the actual data. To achieve this, SQL queries are made outside the AI Agent node, and the results are never passed back to the agent. This approach allows the agent to generate SQL queries based on the structure of tables and their relationships, without having to access the actual data. This makes the process more secure and efficient, especially in cases where data confidentiality is crucial. 🚀 Setup To get started with this workflow, you’ll need to set up a free MySQL server and import your database (check Step 1 and 2 in this tutorial). Of course, you can switch MySQL to another SQL database such as PostgreSQL, the principle remains the same. The key is to download the schema once and save it locally to avoid repeated remote connections. Run the top part of the workflow once to download and store the MySQL chinook database schema file on the server. With this approach, we avoid the need to repeatedly connect to a remote db4free database and fetch the schema every time. As a result, we reach greater processing speed and efficiency. 🗣️ Chat with your data Start a chat: send a message in the chat window. The workflow loads the locally saved MySQL database schema, without having the ability to touch the actual data. The file contains the full structure of your MySQL database for analysis. The Langchain AI Agent receives the schema, your input and begins to work. The AI Agent generates SQL queries and brief comments based solely on the schema and the user’s message. An IF node checks whether the AI Agent has generated a query. When: Yes: the AI Agent passes the SQL query to the next MySQL node for execution. No: You get a direct answer from the Agent without further action. The workflow formats the results of the SQL query, ensuring they are convenient to read and easy to understand. Once formatted, you get both the Agent answer and the query result in the chat window. 🌟 Example queries Try these sample queries to see the schema-driven AI Agent in action: Would you please list me all customers from Germany? What are the music genres in the database? What tables are available in the database? Please describe the relationships between tables. - In this example, the AI Agent does not need to create the SQL query. And if you prefer to keep the data private, you can manually execute the generated SQL query in your own environment using any database client or tool you trust 🗄️ 💭 The AI Agent memory node does not store the actual data as we run SQL-queries outside the agent. It contains the database schema, user questions and the initial Agent reply. Actual SQL query results are passed to the chat window, but the values are not stored in the Agent memory.
yulia
Yulia

More Marketing workflow templates

Google Sheets node
HTTP Request node
Merge node
+4

OpenAI GPT-3: Company Enrichment from website content

Enrich your company lists with OpenAI GPT-3 ↓ You’ll get valuable information such as: Market (B2B or B2C) Industry Target Audience Value Proposition This will help you to: add more personalization to your outreach make informed decisions about which accounts to target I've made the process easy with an n8n workflow. Here is what it does: Retrieve website URLs from Google Sheets Extract the content for each website Analyze it with GPT-3 Update Google Sheets with GPT-3 data
lempire
Lucas Perret
Google Sheets node
HTTP Request node
Microsoft Excel 365 node
Gmail node
+5

Automated Web Scraping: email a CSV, save to Google Sheets & Microsoft Excel

How it works: The workflow starts by sending a request to a website to retrieve its HTML content. It then parses the HTML extracting the relevant information The extracted data is storted and converted into a CSV file. The CSV file is attached to an email and sent to your specified address. The data is simultaneously saved to both Google Sheets and Microsoft Excel for further analysis or use. Set-up steps: Change the website to scrape in the "Fetch website content" node Configure Microsoft Azure credentials with Microsoft Graph permissions (required for the Save to Microsoft Excel 365 node) Configure Google Cloud credentials with access to Google Drive, Google Sheets and Gmail APIs (the latter is required for the Send CSV via e-mail node).
mihailtd
Mihai Farcas
HTTP Request node
S3 node
Respond to Webhook node
+2

Flux AI Image Generator

Easily generate images with Black Forest's Flux Text-to-Image AI models using Hugging Face’s Inference API. This template serves a webform where you can enter prompts and select predefined visual styles that are customizable with no-code. The workflow integrates seamlessly with Hugging Face's free tier, and it’s easy to modify for any Text-to-Image model that supports API access. Try it Curious what this template does? Try a public version here: https://devrel.app.n8n.cloud/form/flux Set Up Watch this quick set up video 👇 Accounts required Huggingface.co account (free) Cloudflare.com account (free - used for storage; but can be swapped easily e.g. GDrive) Key Features: Text-to-Image Creation**: Generates unique visuals based on your prompt and style. Hugging Face Integration**: Utilizes Hugging Face’s Inference API for reliable image generation. Customizable Visual Styles**: Select from preset styles or easily add your own. Adaptable**: Swap in any Hugging Face Text-to-Image model that supports API calls. Ideal for: Creators**: Rapidly create visuals for projects. Marketers**: Prototype campaign visuals. Developers**: Test different AI image models effortlessly. How It Works: You submit an image prompt via the webform and select a visual style, which appends style instructions to your prompt. The Hugging Face Inference API then generates and returns the image, which gets hosted on Cloudflare S3. The workflow can be easily adjusted to use other models and styles for complete flexibility.
max-n8n
Max Tkacz
Gmail node
Gmail Trigger node
+2

Gmail AI Auto-Responder: Create Draft Replies to incoming emails

This workflow automatically generates draft replies in Gmail. It's designed for anyone who manages a high volume of emails or often face writer's block when crafting responses. Since it doesn't send the generated message directly, you're still in charge of editing and approving emails before they go out. How It Works: Email Trigger: activates when new emails reach the Gmail inbox Assessment: uses OpenAI gpt-4o and a JSON parser to determine if a response is necessary. Reply Generation: crafts a reply with OpenAI GPT-4 Turbo Draft Integration: after converting the text to html, it places the draft into the Gmail thread as a reply to the first message Set Up Overview (~10 minutes): OAuth Configuration (follow n8n instructions here): Setup Google OAuth in Google Cloud console. Make sure to add Gmail API with the modify scope. Add Google OAuth credentials in n8n. Make sure to add the n8n redirect URI to the Google Cloud Console consent screen settings. OpenAI Configuration: add OpenAI API Key in the credentials Tweaking the prompt: edit the system prompt in the "Generate email reply" node to suit your needs Detailed Walkthrough Check out this blog post where I go into more details on how I built this workflow. Reach out to me here if you need help building automations for your business.
nchourrout
Nicolas Chourrout
HTTP Request node
Merge node
+5

Personalize marketing emails using customer data and AI

This workflow uses AI to analyze customer sentiment from product feedback. If the sentiment is negative, AI will determine whether offering a coupon could improve the customer experience. Upon completing the sentiment analysis, the workflow creates a personalized email templates. This solution streamlines the process of engaging with customers post-purchase, particularly when addressing dissatisfaction, and ensures that outreach is both personalized and automated. This workflow won the 1st place in our last AI contest. Note that to use this template, you need to be on n8n version 1.19.4 or later.
n8n-team
n8n Team
Google Sheets node
HTTP Request node
+8

Scrape business emails from Google Maps without the use of any third party APIs

Who is this template for? This workflow template is designed for sales, marketing, and business development professionals who want a cost-effective and efficient way to generate leads. By leveraging n8n core nodes, it scrapes business emails from Google Maps without relying on third-party APIs or paid services, ensuring there are no additional costs involved. Ideal for small business owners, freelancers, and agencies, this template automates the process of collecting contact information for targeted outreach, making it a powerful tool for anyone looking to scale their lead generation efforts without incurring extra expenses. How it works This template streamlines email scraping from Google Maps using only n8n core nodes, ensuring a completely free and self-contained solution. Here’s how it operates: Input Queries You provide a list of queries, each consisting of keywords related to the type of business you want to target and the specific region or subregion you’re interested in. Iterates through Queries The workflow processes each query one at a time. For each query, it triggers a sub-workflow dedicated to handling the scraping tasks. Scrapes Google Maps for URLs Using these queries, the workflow scrapes Google Maps to collect URLs of business listings matching the provided criteria. Fetches HTML Content The workflow then fetches the HTML pages of the collected URLs for further processing. Extracts Emails Using a Code Node with custom JavaScript, the workflow runs regular expressions on the HTML content to extract business email addresses. Setup Add Queries: Open the first node, "Run Workflow" and input a list of queries, each containing the business keywords and the target region. Configure the Google Sheets Node: Open the Google Sheets node and select a document and specific sheet where the scraped results will be saved. Run the workflow: Click on "Test workflow" and watch your Google Sheets document gradually receive business email addresses. Customize as Needed: You can adjust the regular expressions in the Code Node to refine the email extraction logic or add logic to extract other kinds of information.
akramkadri
Akram Kadri

More IT Ops workflow templates

HTTP Request node
Merge node
+3

Backup n8n workflows to Google Drive

Temporary solution using the undocumented REST API for backups using Google drive. Please note that there are issues with this workflow. It does not support versioning, so please know that it will create multiple copies of the workflows so if you run this daily it will make the folder grow quickly. Once I figure out how to version in Gdrive I'll update it here.
djangelic
Angel Menendez
Notion node
Code node
+6

Notion AI Assistant Generator

This n8n workflow template lets teams easily generate a custom AI chat assistant based on the schema of any Notion database. Simply provide the Notion database URL, and the workflow downloads the schema and creates a tailored AI assistant designed to interact with that specific database structure. Set Up Watch this quick set up video 👇 Key Features Instant Assistant Generation**: Enter a Notion database URL, and the workflow produces an AI assistant configured to the database schema. Advanced Querying**: The assistant performs flexible queries, filtering records by multiple fields (e.g., tags, names). It can also search inside Notion pages to pull relevant content from specific blocks. Schema Awareness**: Understands and interacts with various Notion column types like text, dates, and tags for accurate responses. Reference Links**: Each query returns direct links to the exact Notion pages that inform the assistant’s response, promoting transparency and easy access. Self-Validation**: The workflow has logic to check the generated assistant, and if any errors are detected, it reruns the agent to fix them. Ideal for Product Managers**: Easily access and query product data across Notion databases. Support Teams**: Quickly search through knowledge bases for precise information to enhance support accuracy. Operations Teams**: Streamline access to HR, finance, or logistics data for fast, efficient retrieval. Data Teams**: Automate large dataset queries across multiple properties and records. How It Works This AI assistant leverages two HTTP request tools—one for querying the Notion database and another for retrieving data within individual pages. It’s powered by the Anthropic LLM (or can be swapped for GPT-4) and always provides reference links for added transparency.
max-n8n
Max Tkacz
HTTP Request node
Redis node
+8

Advanced Telegram Bot, Ticketing System, LiveChat, User Management, Broadcasting

A robust n8n workflow designed to enhance Telegram bot functionality for user management and broadcasting. It facilitates automatic support ticket creation, efficient user data storage in Redis, and a sophisticated system for message forwarding and broadcasting. How It Works Telegram Bot Setup: Initiate the workflow with a Telegram bot configured for handling different chat types (private, supergroup, channel). User Data Management: Formats and updates user data, storing it in a Redis database for efficient retrieval and management. Support Ticket Creation: Automatically generates chat tickets for user messages and saves the corresponding topic IDs in Redis. Message Forwarding: Forwards new messages to the appropriate chat thread, or creates a new thread if none exists. Support Forum Management: Handles messages within a support forum, differentiating between various chat types and user statuses. Broadcasting System: Implements a broadcasting mechanism that sends channel posts to all previous bot users, with a system to filter out blocked users. Blocked User Management: Identifies and manages blocked users, preventing them from receiving broadcasted messages. Versatile Channel Handling: Ensures that messages from verified channels are properly managed and broadcasted to relevant users. Set Up Steps Estimated Time**: Around 30 minutes. Requirements**: A Telegram bot, a Redis database, and Telegram group/channel IDs are necessary. Configuration**: Input the Telegram bot token and relevant group/channel IDs. Configure message handling and user data processing according to your needs. Detailed Instructions**: Sticky notes within the workflow provide extensive setup information and guidance. Live Demo Workflow Bot: Telegram Bot Link (Click here) Support Group: Telegram Group Link (Click here) Broadcasting Channel: Telegram Channel Link (Click here) Keywords: n8n workflow, Telegram bot, chat ticket system, Redis database, message broadcasting, user data management, support forum automation
nskha
Nskha
HTTP Request node
Merge node
+13

AI Agent To Chat With Files In Supabase Storage

Video Guide I prepared a detailed guide explaining how to set up and implement this scenario, enabling you to chat with your documents stored in Supabase using n8n. Youtube Link Who is this for? This workflow is ideal for researchers, analysts, business owners, or anyone managing a large collection of documents. It's particularly beneficial for those who need quick contextual information retrieval from text-heavy files stored in Supabase, without needing additional services like Google Drive. What problem does this workflow solve? Manually retrieving and analyzing specific information from large document repositories is time-consuming and inefficient. This workflow automates the process by vectorizing documents and enabling AI-powered interactions, making it easy to query and retrieve context-based information from uploaded files. What this workflow does The workflow integrates Supabase with an AI-powered chatbot to process, store, and query text and PDF files. The steps include: Fetching and comparing files to avoid duplicate processing. Handling file downloads and extracting content based on the file type. Converting documents into vectorized data for contextual information retrieval. Storing and querying vectorized data from a Supabase vector store. File Extraction and Processing: Automates handling of multiple file formats (e.g., PDFs, text files), and extracts document content. Vectorized Embeddings Creation: Generates embeddings for processed data to enable AI-driven interactions. Dynamic Data Querying: Allows users to query their document repository conversationally using a chatbot. Setup N8N Workflow Fetch File List from Supabase: Use Supabase to retrieve the stored file list from a specified bucket. Add logic to manage empty folder placeholders returned by Supabase, avoiding incorrect processing. Compare and Filter Files: Aggregate the files retrieved from storage and compare them to the existing list in the Supabase files table. Exclude duplicates and skip placeholder files to ensure only unprocessed files are handled. Handle File Downloads: Download new files using detailed storage configurations for public/private access. Adjust the storage settings and GET requests to match your Supabase setup. File Type Processing: Use a Switch node to target specific file types (e.g., PDFs or text files). Employ relevant tools to process the content: For PDFs, extract embedded content. For text files, directly process the text data. Content Chunking: Break large text data into smaller chunks using the Text Splitter node. Define chunk size (default: 500 tokens) and overlap to retain necessary context across chunks. Vector Embedding Creation: Generate vectorized embeddings for the processed content using OpenAI's embedding tools. Ensure metadata, such as file ID, is included for easy data retrieval. Store Vectorized Data: Save the vectorized information into a dedicated Supabase vector store. Use the default schema and table provided by Supabase for seamless setup. AI Chatbot Integration: Add a chatbot node to handle user input and retrieve relevant document chunks. Use metadata like file ID for targeted queries, especially when multiple documents are involved. Testing Upload sample files to your Supabase bucket. Verify if files are processed and stored successfully in the vector store. Ask simple conversational questions about your documents using the chatbot (e.g., "What does Chapter 1 say about the Roman Empire?"). Test for accuracy and contextual relevance of retrieved results.
lowcodingdev
Mark Shcherbakov
Notion node
OpenAI Chat Model node
+3

Notion knowledge base AI assistant

Who is this for This workflow is perfect for teams and individuals who manage extensive data in Notion and need a quick, AI-powered way to interact with their databases. If you're looking to streamline your knowledge management, automate searches, and get faster insights from your Notion databases, this workflow is for you. It’s ideal for support teams, project managers, or anyone who needs to query specific data across multiple records or within individual pages of their Notion setup. Check out the Notion template this Assistant is set up to use: https://www.notion.so/templates/knowledge-base-ai-assistant-with-n8n How it works The Notion Database Assistant uses an AI Agent built with Retrieval-Augmented Generation (RAG) to query this Knowledge Base style Notion database. The assistant can search across multiple properties like tags or question and retrieves content from inside individual Notion pages for additional context. Key features include: Querying the database with flexible filters. Searching within individual Notion pages and extracting relevant blocks. Providing a reference link to the exact Notion pages used to inform its responses, ensuring transparency and easy verification. This assistant uses two HTTP request tools—one for querying the Notion database and another for pulling data from within specific pages. It streamlines knowledge retrieval, offering a conversational, AI-driven way to interact with large datasets. Set up Find basic set up instructions inside the workflow itself or watch a quickstart video 👇
max-n8n
Max Tkacz
GitHub node
HTTP Request node
Merge node

Backup workflows to GitHub

Note: This workflow uses the internal API which is not official. This workflow might break in the future. The workflow executes every night at 23:59. You can configure a different time bin the Cron node. Configure the GitHub nodes with your username, repo name, and the file path. In the HTTP Request nodes (making a request to localhost:5678), create Basic Auth credentials with your n8n instance username and password.
harshil1712
ghagrawal17

Implement complex processes faster with n8n

red icon yellow icon red icon yellow icon