HTTP Request node

PRISM Elastic Alert Notification via Microsoft Graph API

Published 1 month ago

Created by

autom8r
Aditya Gaur

Template description

Who is this template for?

This template is for teams and administrators who use n8n to monitor PRISM Elastic alerts and want to receive automated email notifications when an alert is triggered. It leverages Microsoft Graph API to send emails and provides an efficient way to notify users about alerts directly in their inbox.

How it works?

The template connects to the PRISM Elastic API to retrieve alert data. When a new alert is detected, the workflow processes the alert content and sends an email notification via Microsoft Graph API. The email includes alert details such as the alert name, timestamp, severity, and a summary of the message, allowing for quick action or review.

Setup steps

Step 1: Set up OAuth2 Credentials in n8n for Microsoft Graph API with Mail.Send permission.
Step 2: Configure your PRISM Elastic API endpoint in the HTTP Request node to retrieve alerts.
Step 3: Modify the email recipients in the template to specify who will receive the alert notifications.
Step 4: Customize the email format, if necessary, to include additional alert details or adjust the message.

Share Template

More IT Ops workflow templates

HTTP Request node
Merge node
+3

Backup n8n workflows to Google Drive

Temporary solution using the undocumented REST API for backups using Google drive. Please note that there are issues with this workflow. It does not support versioning, so please know that it will create multiple copies of the workflows so if you run this daily it will make the folder grow quickly. Once I figure out how to version in Gdrive I'll update it here.
djangelic
Angel Menendez
HTTP Request node
Redis node
+8

Advanced Telegram Bot, Ticketing System, LiveChat, User Management, Broadcasting

A robust n8n workflow designed to enhance Telegram bot functionality for user management and broadcasting. It facilitates automatic support ticket creation, efficient user data storage in Redis, and a sophisticated system for message forwarding and broadcasting. How It Works Telegram Bot Setup: Initiate the workflow with a Telegram bot configured for handling different chat types (private, supergroup, channel). User Data Management: Formats and updates user data, storing it in a Redis database for efficient retrieval and management. Support Ticket Creation: Automatically generates chat tickets for user messages and saves the corresponding topic IDs in Redis. Message Forwarding: Forwards new messages to the appropriate chat thread, or creates a new thread if none exists. Support Forum Management: Handles messages within a support forum, differentiating between various chat types and user statuses. Broadcasting System: Implements a broadcasting mechanism that sends channel posts to all previous bot users, with a system to filter out blocked users. Blocked User Management: Identifies and manages blocked users, preventing them from receiving broadcasted messages. Versatile Channel Handling: Ensures that messages from verified channels are properly managed and broadcasted to relevant users. Set Up Steps Estimated Time**: Around 30 minutes. Requirements**: A Telegram bot, a Redis database, and Telegram group/channel IDs are necessary. Configuration**: Input the Telegram bot token and relevant group/channel IDs. Configure message handling and user data processing according to your needs. Detailed Instructions**: Sticky notes within the workflow provide extensive setup information and guidance. Live Demo Workflow Bot: Telegram Bot Link (Click here) Support Group: Telegram Group Link (Click here) Broadcasting Channel: Telegram Channel Link (Click here) Keywords: n8n workflow, Telegram bot, chat ticket system, Redis database, message broadcasting, user data management, support forum automation
nskha
Nskha
Notion node
Code node
+6

Notion AI Assistant Generator

This n8n workflow template lets teams easily generate a custom AI chat assistant based on the schema of any Notion database. Simply provide the Notion database URL, and the workflow downloads the schema and creates a tailored AI assistant designed to interact with that specific database structure. Set Up Watch this quick set up video 👇 Key Features Instant Assistant Generation**: Enter a Notion database URL, and the workflow produces an AI assistant configured to the database schema. Advanced Querying**: The assistant performs flexible queries, filtering records by multiple fields (e.g., tags, names). It can also search inside Notion pages to pull relevant content from specific blocks. Schema Awareness**: Understands and interacts with various Notion column types like text, dates, and tags for accurate responses. Reference Links**: Each query returns direct links to the exact Notion pages that inform the assistant’s response, promoting transparency and easy access. Self-Validation**: The workflow has logic to check the generated assistant, and if any errors are detected, it reruns the agent to fix them. Ideal for Product Managers**: Easily access and query product data across Notion databases. Support Teams**: Quickly search through knowledge bases for precise information to enhance support accuracy. Operations Teams**: Streamline access to HR, finance, or logistics data for fast, efficient retrieval. Data Teams**: Automate large dataset queries across multiple properties and records. How It Works This AI assistant leverages two HTTP request tools—one for querying the Notion database and another for retrieving data within individual pages. It’s powered by the Anthropic LLM (or can be swapped for GPT-4) and always provides reference links for added transparency.
max-n8n
Max Tkacz
Notion node
OpenAI Chat Model node
+3

Notion knowledge base AI assistant

Who is this for This workflow is perfect for teams and individuals who manage extensive data in Notion and need a quick, AI-powered way to interact with their databases. If you're looking to streamline your knowledge management, automate searches, and get faster insights from your Notion databases, this workflow is for you. It’s ideal for support teams, project managers, or anyone who needs to query specific data across multiple records or within individual pages of their Notion setup. Check out the Notion template this Assistant is set up to use: https://www.notion.so/templates/knowledge-base-ai-assistant-with-n8n How it works The Notion Database Assistant uses an AI Agent built with Retrieval-Augmented Generation (RAG) to query this Knowledge Base style Notion database. The assistant can search across multiple properties like tags or question and retrieves content from inside individual Notion pages for additional context. Key features include: Querying the database with flexible filters. Searching within individual Notion pages and extracting relevant blocks. Providing a reference link to the exact Notion pages used to inform its responses, ensuring transparency and easy verification. This assistant uses two HTTP request tools—one for querying the Notion database and another for pulling data from within specific pages. It streamlines knowledge retrieval, offering a conversational, AI-driven way to interact with large datasets. Set up Find basic set up instructions inside the workflow itself or watch a quickstart video 👇
max-n8n
Max Tkacz
GitHub node
HTTP Request node
Merge node

Backup workflows to GitHub

Note: This workflow uses the internal API which is not official. This workflow might break in the future. The workflow executes every night at 23:59. You can configure a different time bin the Cron node. Configure the GitHub nodes with your username, repo name, and the file path. In the HTTP Request nodes (making a request to localhost:5678), create Basic Auth credentials with your n8n instance username and password.
harshil1712
ghagrawal17
HTTP Request node
Webhook node
Respond to Webhook node
HTML node
OpenAI node

Dynamically generate a webpage from user request using OpenAI Structured Output

This workflow is a experiment to build HTML pages from a user input using the new Structured Output from OpenAI. How it works: Users add what they want to build as a query parameter The OpenAI node generate an interface following a structured output defined in the body The JSON output is then converted to HTML along with a title The HTML is encapsulated in an HTML node (where the Tailwind css script is added) The HTML is rendered to the user via the Webhook response. Set up steps Create an OpenAI API Key Create the OpenAI credentials Use the credentials for both nodes HTTP Request (as Predefined Credential type) and OpenAI Activate your workflow Once active, go to the production URL and add what you'd like to build as the parameter "query" Example: https://production_url.com?query=a%20signup%20form Example of generated page
agentstudio
Agent Studio

More SecOps workflow templates

HTTP Request node
Merge node
Slack node
+4

Phishing Analysis - URLScan.io and VirusTotal

This n8n workflow automates the analysis of email messages received in a Microsoft Outlook inbox to identify indicators of compromise (IOCs), specifically suspicious URLs. It can be triggered manually or scheduled to run daily at midnight. The workflow begins by retrieving up to 100 read email messages from the Outlook inbox. However, there seems to be a configuration issue as it should retrieve unread messages, not read ones. It then marks these messages as read to avoid processing them again in the future. The messages are then split into individual items using the Split In Batches node for sequential processing. For each email, the workflow analyzes its content to find URLs, which are considered potential IOCs. If URLs are found, the workflow proceeds to check these URLs for potential threats using two services, URLScan.io and VirusTotal, in parallel. In the first path, URLScan.io scans each URL, and if there are no errors, the results from URLScan.io and VirusTotal are merged. If there are errors, the workflow waits 1 minute before attempting to retrieve the URLScan results again. The loop then continues for the next email. In the second path, VirusTotal is used to scan the URLs, and the results are retrieved. Finally, the workflow checks if the data field is not empty, filtering out items where no data was found. It then sends a summarized Slack message to report details about the analyzed email, including the subject, sender, date, URLScan report URL, and VirusTotal verdict for URLs that were reported as malicious. Potential issues during setup include configuring the Outlook node to retrieve unread messages, resolving a configuration issue in the VirusTotal node, and handling authentication and API keys for both URLScan.io and VirusTotal nodes. Additionally, proper error handling and testing with various email content types and URLs are essential to ensure the workflow accurately identifies IOCs and reports them to the Slack channel.
n8n-team
n8n Team
Google Drive node
+4

Automate Image Validation Tasks using AI Vision

This n8n workflow shows how using multimodal LLMs with AI vision can tackle tricky image validation tasks which are near impossible to achieve with code and often impractical to be done by humans at scale. You may need image validation when users submitted photos or images are required to meet certain criteria before being accepted. A wine review website may require users only submit photos of wine with labels, a bank may require account holders to submit scanned documents for verification etc. In this demonstration, our scenario will be to analyse a set of portraits to verify if they meet the criteria for valid passport photos according to the UK government website (https://www.gov.uk/photos-for-passports). How it works Our set of portaits are jpg files downloaded from our Google Drive using the Google Drive node. Each image is resized using the Edit Image node to ensure a balance between resolution and processing speed. Using the Basic LLM node, we'll define a "user message" option with the type of binary (data). This will allow us to pass our portrait to the LLM as an input. With our prompt containing the criteria pulled off the passport photo requirements webpage, the LLM is able to validate the photo does or doesn't meet its criteria. A structured output parser is used to structure the LLM's response to a JSON object which has the "is_valid" boolean property. This can be useful to further extend the workflow. Requirements Google Gemini API key Google Drive account Customising this workflow Not using Gemini? n8n's LLM node works with any compatible multimodal LLM so feel free to swap Gemini out for OpenAI's GPT4o or Antrophic's Claude Sonnet. Don't need to validate portraits? Try other use cases such as document classification, security footage analysis, people tagging in photos and more.
jimleuk
Jimleuk
Cortex node
TheHive node

Analyze emails with S1EM

With workflow, you analyze Email with TheHive/Cortex https://github.com/V1D1AN/S1EM/wiki/Soar-guide
v1d1an
v1d1an
HTTP Request node
Merge node
Slack node
+7

URL and IP lookups through Greynoise and VirusTotal

This n8n workflow serves as a powerful cybersecurity and threat intelligence tool to look up URLs or IP addresses through industry standard threat intelligence vendors. It starts with either a form submission or a webhook trigger, allowing users to input data, URLs or IPs that require analysis. The workflow then splits into two paths depending on whether the input data is an IP or URL. If an IP was given, it sets the ip variable to the IP; however if a URL was given the workflow will perform a DNS lookup using Google Public DNS and sets the ip variable based on the results from Google. The workflow then checks the obtained IP addresses against GreyNoise services, with one branch utilizing GreyNoise RIOT IP Lookup to assess IP reputation and association with known benign services, and the other using GreyNoise IP Context to evaluate potential threats. The results from both GreyNoise services are merged to create a comprehensive analysis which includes the IP, classification (benign, malicious, or unknown), IP location, tags to identify activity or malware, category, and trust level. In parallel, a VirusTotal scan is initiated for the URL/IP to identify if it is malicious. A 5-second wait ensures proper processing, and the workflow subsequently polls the scan result to determine when the analysis is complete. The workflow then summarizes the analysis including the overall security vendor analysis results, blockList analysis, OpenPhish analysis, the URL, and the IP. Finally, the workflow combines the summarized intelligence from both GreyNoise and VirusTotal to provide a thorough analysis of the URL/IP. This summarized intelligence can then be emailed to the user that filled out the form via Gmail or it can be sent to the user via a Slack message. Setting up this workflow may require proper configuration of the form submission or webhook trigger, and ensuring that the GreyNoise and VirusTotal API credentials are correctly integrated. Users should also consider the potential volume of data and API rate limits, as excessive requests could lead to issues. Proper documentation and validation of input data are crucial to ensure accurate and meaningful results in the final report.
n8n-team
n8n Team
HTTP Request node
Webhook node
Respond to Webhook node
+3

Authenticate a user in a workflow with openid connect

Intro This workflow needs a user to authenticate by using an openid connect provider in order to call the webhook. If the user is not authenticated, it starts a login process by using an Authorization Code with PKCE https://datatracker.ietf.org/doc/html/rfc7636, a standard way to authenticate users with openid connect. Then, after the user logs in, the webhook is refreshed and gets the user's token from a cookie. With this token, all details about the user are requested through the userinfo endpoint on the identity provider. How to set up with Keycloak Keycloak Keycloak is an open source identity and access management solution. Feel free to get a demo realm at https://please-open.it or get your own Keycloak server up and running. After creating a realm, go to "Realm Settings" and click on "OpenID Endpoint Configuration" Retrieve authorization_endpoint, token_endpoint and userinfo_endpoint values. Set those variables in the "Set variables" node. In Keycloak, create a new client (name it as you want) Disable the client authentication, check only "standard flow" : At the third step, put the webhook url in "valid redirect URIs", fill "Web origins" with a "+". You're done, open the webhook and it asks you to authenticate. Usage User informations The userinfo node returns this structure about the user has logged in : [ { "sub":"73a6543f-f420-4fa6-9811-209e903c348b", "email_verified":true, "preferred_username": "[email protected]", "email": "[email protected]" } ] I can use those infos in my workflow for custom operations. APIs calls the "code" node returns me a cookie named "n8n-custom-auth" which is the access_token returned by the identity provider. This access_token can be used to call APIs connected to this identity provider (for example, we call userinfo API with this token). Example : asks a user to log in with his Google account then call an API (Gmail, drive...) with his own token. How it works We published a blog post about this flow, how it works and how you can use it : https://blog.please-open.it/n8n-openid-client/
please-open-it
please-open.it
HTTP Request node
Merge node
Webhook node
+3

Analyze Email Headers for IPs and Spoofing

This n8n workflow is designed to analyze email headers received via a webhook. The workflow splits into two main paths based on the presence of the received and authentication results headers. In the first path, if received headers are present, the workflow extracts IP addresses from these headers and then queries the IP Quality Score API to gather information about the IP addresses, including fraud score, abuse history, organization, and more. Geolocation data is also obtained from the IP-API API. The workflow collects and aggregates this information for each IP address. In the second path, if authentication-results headers are present, the workflow extracts SPF, DKIM, and DMARC authentication results. It then evaluates these results and sets fields accordingly (e.g., SPF pass/fail/neutral). The paths merge their results, and the workflow responds to the original webhook with the aggregated analysis, including IP information and authentication results. Potential issues during setup include ensuring proper configuration of the webhook calls with header authentication, handling authentication and API keys for the IP Quality Score API, and addressing any discrepancies or errors in the logic nodes, such as handling SPF, DKIM, and DMARC results correctly. Additionally, thorough testing with various email header formats is essential to ensure accurate analysis and response.
n8n-team
n8n Team

Implement complex processes faster with n8n

red icon yellow icon red icon yellow icon