Back to Integrations
integrationGoogle Gemini Chat Model node
integrationWhatsApp Business Cloud node

Google Gemini Chat Model and WhatsApp Business Cloud integration

Save yourself the work of writing custom integrations for Google Gemini Chat Model and WhatsApp Business Cloud and use n8n instead. Build adaptable and scalable AI, Langchain, and Communication workflows that work with your technology stack. All within a building experience you will love.

How to connect Google Gemini Chat Model and WhatsApp Business Cloud

  • Step 1: Create a new workflow
  • Step 2: Add and configure nodes
  • Step 3: Connect
  • Step 4: Customize and extend your integration
  • Step 5: Test and activate your workflow

Step 1: Create a new workflow and add the first step

In n8n, click the "Add workflow" button in the Workflows tab to create a new workflow. Add the starting point – a trigger on when your workflow should run: an app event, a schedule, a webhook call, another workflow, an AI chat, or a manual trigger. Sometimes, the HTTP Request node might already serve as your starting point.

Google Gemini Chat Model and WhatsApp Business Cloud integration: Create a new workflow and add the first step

Step 2: Add and configure Google Gemini Chat Model and WhatsApp Business Cloud nodes

You can find Google Gemini Chat Model and WhatsApp Business Cloud in the nodes panel. Drag them onto your workflow canvas, selecting their actions. Click each node, choose a credential, and authenticate to grant n8n access. Configure Google Gemini Chat Model and WhatsApp Business Cloud nodes one by one: input data on the left, parameters in the middle, and output data on the right.

Google Gemini Chat Model and WhatsApp Business Cloud integration: Add and configure Google Gemini Chat Model and WhatsApp Business Cloud nodes

Step 3: Connect Google Gemini Chat Model and WhatsApp Business Cloud

A connection establishes a link between Google Gemini Chat Model and WhatsApp Business Cloud (or vice versa) to route data through the workflow. Data flows from the output of one node to the input of another. You can have single or multiple connections for each node.

Google Gemini Chat Model and WhatsApp Business Cloud integration: Connect Google Gemini Chat Model and WhatsApp Business Cloud

Step 4: Customize and extend your Google Gemini Chat Model and WhatsApp Business Cloud integration

Use n8n's core nodes such as If, Split Out, Merge, and others to transform and manipulate data. Write custom JavaScript or Python in the Code node and run it as a step in your workflow. Connect Google Gemini Chat Model and WhatsApp Business Cloud with any of n8n’s 1000+ integrations, and incorporate advanced AI logic into your workflows.

Google Gemini Chat Model and WhatsApp Business Cloud integration: Customize and extend your Google Gemini Chat Model and WhatsApp Business Cloud integration

Step 5: Test and activate your Google Gemini Chat Model and WhatsApp Business Cloud workflow

Save and run the workflow to see if everything works as expected. Based on your configuration, data should flow from Google Gemini Chat Model to WhatsApp Business Cloud or vice versa. Easily debug your workflow: you can check past executions to isolate and fix the mistake. Once you've tested everything, make sure to save your workflow and activate it.

Google Gemini Chat Model and WhatsApp Business Cloud integration: Test and activate your Google Gemini Chat Model and WhatsApp Business Cloud workflow

Respond to WhatsApp Messages with AI Like a Pro!

This n8n template demonstrates the beginnings of building your own n8n-powered WhatsApp chatbot! Under the hood, utilise n8n's powerful AI features to handle different message types and use an AI agent to respond to the user. A powerful tool for any use-case!

How it works
Incoming WhatsApp Trigger provides a way to get messages into the workflow.
The message received is extracted and sent through 1 of 4 branches for processing.
Each processing branch uses AI to analyse, summarize or transcribe the message so that the AI agent can understand it. The supported types are text, image, audio (voice notes) and video.
The AI Agent is used to generate a response generally and uses a wikipedia tool for more complex queries.
Finally, the response message is sent back to the WhatsApp user using the WhatsApp node.

How to use
Once you have setup and configured your WhatsApp account, you'll need to activate your workflow to start processing messages.

Good to know: Large media files may negatively impact workflow performance.

Requirements
WhatsApp Buisness account
Google Gemini for LLM. Gemini is used specifically because it can accept audio and video files whereas at time of writing, many other providers like OpenAI's GPT, do not.

Customising this workflow
For performance reasons, consider detecting large audio and video before sending to the LLM. Pre-processing such files may allow your agent to perform better.
Go beyond and create rich and engagement customer experiences by responding using images, audio and video instead of just text!

Nodes used in this workflow

Popular Google Gemini Chat Model and WhatsApp Business Cloud workflows

AI Fitness Coach Strava Data Analysis and Personalized Training Insights

Detailed Title "Triathlon Coach AI Workflow: Strava Data Analysis and Personalized Training Insights using n8n" Description This n8n workflow enables you to build an AI-driven virtual triathlon coach that seamlessly integrates with Strava to analyze activity data and provide athletes with actionable training insights. The workflow processes data from activities like swimming, cycling, and running, delivers personalized feedback, and sends motivational and performance improvement advice via email or WhatsApp. Workflow Details Trigger: Strava Activity Updates Node:** Strava Trigger Purpose:** Captures updates from Strava whenever an activity is recorded or modified. The data includes metrics like distance, pace, elevation, heart rate, and more. Integration:** Uses Strava API for real-time synchronization. Step 1: Data Preprocessing Node:** Code Purpose:** Combines and flattens the raw Strava activity data into a structured format for easier processing in subsequent nodes. Logic:** A recursive function flattens JSON input to create a clean and readable structure. Step 2: AI Analysis with Google Gemini Node:** Google Gemini Chat Model Purpose:** Leverages Google Gemini's advanced language model to analyze the activity data. Functionality:** Identifies key performance metrics. Provides feedback and insights specific to the type of activity (e.g., running, swimming, or cycling). Offers tailored recommendations and motivational advice. Step 3: Generate Structured Output Node:** Structure Output Purpose:** Processes the AI-generated response to create a structured format, such as headings, paragraphs, and bullet lists. Output:** Formats the response for clear communication. Step 4: Convert to HTML Node:** Convert to HTML Purpose:** Converts the structured output into an HTML format suitable for email or other presentation methods. Output:** Ensures the response is visually appealing and easy to understand. Step 5: Send Email with Training Insights Node:** Send Email Purpose:** Sends a detailed email to the athlete with performance insights, training recommendations, and motivational messages. Integration:** Utilizes Gmail or SMTP for secure and efficient email delivery. Optional Step: WhatsApp Notifications Node:** WhatsApp Business Cloud Purpose:** Sends a summary of the activity analysis and key recommendations via WhatsApp for instant access. Integration:** Connects to WhatsApp Business Cloud for automated messaging. Additional Notes Customization: You can modify the AI prompt to adapt the recommendations to the athlete's specific goals or fitness levels. The workflow is flexible and can accommodate additional nodes for more advanced analysis or output formats. Scalability: Ideal for individual athletes or coaches managing multiple athletes. Can be expanded to include additional metrics or insights based on user preferences. Performance Metrics Handled: Swimming: SWOLF, stroke count, pace. Cycling: Cadence, power zones, elevation. Running: Pacing, stride length, heart rate zones. Implementation Steps Set Up Strava API Key: Log in to Strava Developers to generate your API key. Integrate the API key into the Strava Trigger node. Configure Google Gemini Integration: Use your Google Gemini (PaLM) API credentials in the Google Gemini Chat Model node. Customize Email and WhatsApp Messaging: Update the Send Email and WhatsApp Business Cloud nodes with the recipient’s details. Automate Execution: Deploy the workflow and use n8n's scheduling features or cron jobs for periodic execution. Developer Notes Author:** Amjid Ali improvements. Resources:** See in Action: Syncbricks Youtube PayPal: Support the Developer Courses : SyncBricks LMS By using this workflow, triathletes and coaches can elevate training to the next level with AI-powered insights and actionable recommendations.
+2

Respond to WhatsApp Messages with AI Like a Pro!

This n8n template demonstrates the beginnings of building your own n8n-powered WhatsApp chatbot! Under the hood, utilise n8n's powerful AI features to handle different message types and use an AI agent to respond to the user. A powerful tool for any use-case! How it works Incoming WhatsApp Trigger provides a way to get messages into the workflow. The message received is extracted and sent through 1 of 4 branches for processing. Each processing branch uses AI to analyse, summarize or transcribe the message so that the AI agent can understand it. The supported types are text, image, audio (voice notes) and video. The AI Agent is used to generate a response generally and uses a wikipedia tool for more complex queries. Finally, the response message is sent back to the WhatsApp user using the WhatsApp node. How to use Once you have setup and configured your WhatsApp account, you'll need to activate your workflow to start processing messages. Good to know: Large media files may negatively impact workflow performance. Requirements WhatsApp Buisness account Google Gemini for LLM. Gemini is used specifically because it can accept audio and video files whereas at time of writing, many other providers like OpenAI's GPT, do not. Customising this workflow For performance reasons, consider detecting large audio and video before sending to the LLM. Pre-processing such files may allow your agent to perform better. Go beyond and create rich and engagement customer experiences by responding using images, audio and video instead of just text!
+2

AI-Powered Candidate Shortlisting Automation for ERPNext

Template Guide for Employee Shortlisting AI Agent Automation Overview This template automates the process of shortlisting job applicants using ERPNext, n8n, and AI-powered decision-making tools like Google Gemini and OpenAI. It reduces manual effort, ensures fast evaluations, and provides justifiable decisions about applicants. This is ideal for businesses aiming to streamline their recruitment process while maintaining accuracy and professionalism. YouTube Tutorial:** For a full walkthrough of this template, visit: Integrate AI in ERPNext: Automate Recruitment Job Applicant Shortlisting in Seconds! What Does This Template Do? Webhook Integration with ERPNext: Automatically triggers the workflow when a job application is created in ERPNext. Resume Validation: Ensures resumes are attached and correctly processes various file formats like PDF and DOC. AI-Powered Evaluation: Uses AI to compare resumes against job descriptions and provides a: Fit Level (Strong, Moderate, or Weak) Score (0–100) Justification for the decision. Automated Decision Making: Based on AI-generated scores: Candidates with a score of 80 or higher are Accepted. Candidates below 80 are Rejected. Applications missing required fields or attachments are put On Hold. ERPNext Integration: Updates applicant records in ERPNext, including custom fields such as justification, fit level, and scores. Notifications: Notifies candidates via email, WhatsApp, or SMS about their application status. Step-by-Step Guide Step 1: Set Up ERPNext Webhook Go to Webhooks in ERPNext. Create a webhook for the Job Applicant DocType. Set the trigger to Insert. Pin and test the webhook to ensure proper data flow. Step 2: Import the Template into n8n Open your n8n instance. Import the provided workflow template. Check all nodes for proper configuration. Step 3: Configure Credentials Add your ERPNext API credentials to the ERPNext nodes. Add credentials for AI services like OpenAI or Google Gemini. Configure additional services like WhatsApp or email if you plan to use them for notifications. Step 4: Test Resume Validation Test how the workflow handles different file types (e.g., PDF, DOC, JPG). Ensure resumes without the proper format or attachment are flagged and rejected. Step 5: AI Evaluation The AI model (Google Gemini or OpenAI) will evaluate resumes against job descriptions. Customize the AI prompt to suit your job evaluation needs. The output will include a Fit Level, Score, Rating, and Justification. Step 6: Decision Automation The workflow automatically categorizes applicants: Accepted for scores ≥ 80. Rejected for scores < 80. On Hold if essential fields or attachments are missing. Step 7: Update ERPNext Records The workflow updates the Job Applicant record in ERPNext with: Status (Accepted, Rejected, On Hold) AI-generated Fit Level, Score, Rating, and Justification. Step 8: Notify Candidates Configure notification nodes (email, WhatsApp, or SMS). Inform candidates about their application status and include feedback if required. How It Works Trigger: The workflow starts when a job application is submitted in ERPNext. Validation: Checks if the resume is attached and in the correct format. AI Evaluation: Compares the resume with the job description and generates a decision. ERPNext Update: Updates the applicant's record with the decision and justification. Notification: Sends a personalized notification to the candidate. Dos and Don’ts Dos: Customize Prompts:** Tailor the AI prompt to match your specific job evaluation requirements. Test the Workflow:** Run sample data to ensure the process works as intended. Secure Your Credentials:** Keep your API credentials safe and do not share them publicly. Optimize for Different Formats:** Ensure the workflow can handle all types of resumes you expect. Don’ts: Avoid Manual Intervention:** Let the workflow handle most of the tasks to ensure efficiency. Do Not Skip Testing:** Always test the workflow with various scenarios to avoid errors. Do Not Overlook Notifications:** Ensure candidates are notified promptly to maintain professionalism. Customization Options Add logic for more file types (e.g., scanned images using OCR). Enhance the AI prompts to analyze more complex resume data. Integrate additional tools like Slack or Trello for recruitment tracking. Resources YouTube Tutorial:** For a full walkthrough of this template, visit: SyncBricks YouTube Channel Detailed Guides and Courses:** Learn more about ERPNext and AI-driven automation at: SyncBricks LMS Support If you encounter issues or want to explore more possibilities with AI-driven automation, feel free to reach out: Email:** [email protected] Website:** ERPNext and Other Courses LinkedIn:** Amjid Ali Let me know if you'd like further details or modifications to the guide!

Build your own Google Gemini Chat Model and WhatsApp Business Cloud integration

Create custom Google Gemini Chat Model and WhatsApp Business Cloud workflows by choosing triggers and actions. Nodes come with global operations and settings, as well as app-specific parameters that can be configured. You can also use the HTTP Request node to query data from any app or service with a REST API.

WhatsApp Business Cloud supported actions

Send
Send Template
Upload
Download
Delete

FAQs

  • Can Google Gemini Chat Model connect with WhatsApp Business Cloud?

  • Can I use Google Gemini Chat Model’s API with n8n?

  • Can I use WhatsApp Business Cloud’s API with n8n?

  • Is n8n secure for integrating Google Gemini Chat Model and WhatsApp Business Cloud?

  • How to get started with Google Gemini Chat Model and WhatsApp Business Cloud integration in n8n.io?

Looking to integrate Google Gemini Chat Model and WhatsApp Business Cloud in your company?

Over 3000 companies switch to n8n every single week

Why use n8n to integrate Google Gemini Chat Model with WhatsApp Business Cloud

Build complex workflows, really fast

Build complex workflows, really fast

Handle branching, merging and iteration easily.
Pause your workflow to wait for external events.

Code when you need it, UI when you don't

Simple debugging

Your data is displayed alongside your settings, making edge cases easy to track down.

Use templates to get started fast

Use 1000+ workflow templates available from our core team and our community.

Reuse your work

Copy and paste, easily import and export workflows.

Implement complex processes faster with n8n

red iconyellow iconred iconyellow icon