Back to Integrations
integration integration
integration OpenAI Chat Model node

Integrate OpenAI Chat Model in your LLM apps and 422+ apps and services

Use OpenAI Chat Model to easily build AI-powered applications and integrate them with 422+ apps and services. n8n lets you seamlessly import data from files, websites, or databases into your LLM-powered application and create automated scenarios.

Popular ways to use OpenAI Chat Model integration

Slack node
Code node
+5

Ask a human for help when the AI doesn't know the answer

This is a workflow that tries to answer user queries using the standard GPT-4 model. If it can't answer, it sends a message to Slack to ask for human help. It prompts the user to supply an email address. This workflow is used in Advanced AI examples | Ask a human in the documentation. To use this workflow: Load it into your n8n instance. Add your credentials as prompted by the notes. Configure the Slack node to use your Slack details, or swap out Slack for a different service.
deborah
Deborah
Google Sheets node
HTTP Request node
+12

Survey Insights with Qdrant, Python and Information Extractor

This n8n template is one of a 3-part series exploring use-cases for clustering vector embeddings: Survey Insights Customer Insights Community Insights This template demonstrates the Survey Insights scenario where survey participant responses can be quickly grouped by similarity and an AI agent can generate insights on those groupings. With this workflow, researchers can save days and even weeks of work breaking down cohorts of participants and identify frequently mentioned positives and negatives. Sample Output: https://docs.google.com/spreadsheets/d/e/2PACX-1vT6m8XH8JWJTUAfwojc68NAUGC7q0lO7iV738J7aO5fuVjiVzdTRRPkMmT1C4N8TwejaiT0XrmF1Q48/pubhtml# How it works All survey questions and responses are imported from a Google Sheet. Responses are then inserted into a Qdrant collection carefully tagged with the question and survey metadata. For each question, all relevant response are put through a clustering algorithm using the Python Code node. The Qdrant points are returned in clustered groups. Each group is looped to fetch the payloads of the points and feed them to the AI agent to summarise and generate insights for. The resulting insights and raw responses are then saved to the Google Spreadsheet for further analysis by the researcher. Requirements Survey data and format as shown in the attached google sheet. Qdrant Vectorstore for storing embeddings. OpenAI account for embeddings and LLM. Customising the Template Adjust clustering parameters which make sense for your data. Add more clusters for open-ended questions and less clusters when responses are multiple choice.
jimleuk
Jimleuk
HTTP Request node
Merge node
Telegram node
Gmail node
+6

Transforming Emails into Podcasts

Transforming Emails into Podcasts 🎙️ Check out this channel for example. The n8n workflow described here aims to revolutionize the way users engage with promotional emails by converting them into entertaining audio podcasts. This innovative project leverages automation through n8n to streamline tasks and enhance user experience. Project Benefit 🎧🌟 The primary goal of this project is to transform "CATEGORY_PROMOTIONS" emails into engaging audio content. By converting text into speech, users can enjoy promotional material hands-free, making it easier to consume information while on the go or relaxing. The workflow consists of several key steps orchestrated seamlessly to deliver a delightful experience to users. How to Use the Workflow: Gmail trigger Node: Initiates the workflow by fetching "CATEGORY_PROMOTIONS" emails at regular intervals. The Gmail Trigger node in your N8N workflow is set to poll for new emails every minute and is configured to filter emails with the label "CATEGORY_PROMOTIONS" before triggering the workflow. Steps to Use Filters Inside the Gmail Trigger Node: Configure Gmail Trigger Node: Set "Poll Times" to "Every Minute" to check for new emails at regular intervals. Enable the "Simple" toggle if you want to simplify the node interface. Under "Filters", specify the label IDs you want to filter by. In this case, it's set to "CATEGORY_PROMOTIONS". Adjust any additional options as needed. // Configure Gmail Trigger node pollTimes: { item: [ { mode: "everyMinute" } ] }, simple: false, filters: { labelIds: [ "CATEGORY_PROMOTIONS" ] }, options: {} Save and Execute: Save your workflow and execute it to start monitoring your Gmail account for new emails with the specified label filter. By following these steps, your workflow will effectively trigger based on new emails that match the "CATEGORY_PROMOTIONS" label in your Gmail account. Get message content Node: Extracts the email content for processing. Summarization Chain Node: Generates concise summaries using advanced methods for better readability. Delete the unnecessary items Node: Removes irrelevant details from the email content. Text to Free TTS Node: Converts the summary text into speech using Free TTS technology. Convert from base64 to File Node: Transforms the audio data into a compatible file format. Merge Text with Audio Node: Combines the text and audio components seamlessly. Aggregate in same cell Node: Gathers all processed data for finalization. Send Message to Telegram Node: Dispatches the audio message along with a caption to a designated Telegram chat ID. By automating these tasks, the workflow ensures efficient communication and delivers content in a more engaging format, fostering a positive user experience. Configuration Instructions: The configuration of this workflow involves setting up the necessary nodes and establishing connections between them. Each node performs a specific function crucial to the overall operation of the workflow. Additionally, credentials need to be provided for accessing Gmail and OpenAI services to enable seamless data processing and summarization. Utilizing Text-to-Speech API 🎧 In addition to n8n automation, an external Text-to-Speech API plays a pivotal role in generating audio content from text data. By sending a POST request with JSON data containing the text and voice preferences, users can quickly receive audio files of the converted content. The API offers a straightforward interface for text-to-speech conversion, making it ideal for creating audio clips efficiently. To access this API, simply submit the desired text and voice selection to receive the generated speech audio file. The API endpoint can be accessed at https://tiktok-tts.weilnet.workers.dev/api/generation or through https://tiktokvoicegenerator.com/. In conclusion, this n8n workflow coupled with a Text-to-Speech API presents a powerful solution for transforming emails into captivating podcasts, enhancing user engagement and communication effectiveness. By embracing automation and innovative technologies, this project aims to improve user experience and streamline content delivery processes. 🌈✨🚀
omar
AlQaisi
HTTP Request node
Merge node
Ghost node
+9

Research AI Agent Team with auto citations using OpenRouter and Perplexity

Purpose of workflow: This AI-powered workflow is designed to automatically generate comprehensive, well-researched articles on any given topic. It utilizes a team of AI agents to streamline the research and writing process, producing high-quality content with proper citations and credible sources. How it works Multi-agent team: Research Leader: Plans and conducts initial research, creating a table of contents. Project Planner: Breaks down the table of contents into manageable sections. Research Assistants: Multiple agents that conduct in-depth research on assigned sections. Editor: Compiles and refines the final article, ensuring coherence and proper citations. Key features: Utilizes Perplexity AI for internet search and citation capabilities Produces well-structured articles with proper citations Customizable parameters (topic, tone, word count, number of sections) Step by step setup: Get account from OpenRouter.ai to access Perplexity API Set API key in the Perplexity API node Credential key name : Authorization and key value Bearer <api-key value>
derekcheungsa
Derek Cheung
OpenAI Chat Model node
SerpApi (Google Search) node
+2

AI chatbot that can search the web

This workflow is designed for dynamic and intelligent conversational capabilities. It incorporates OpenAI's GPT-4o model for natural language understanding and generation. Additional tools include SerpAPI and Wikipedia for enriched, data-driven responses. The workflow is triggered manually, and utilizes a 'Window Buffer Memory' to maintain the context of the last 20 interactions for better conversational continuity. All these components are orchestrated through n8n nodes, ensuring seamless interconnectivity. To use this template, you need to be on n8n version 1.50.0 or later.
n8n-team
n8n Team
HTTP Request node
Merge node
Webhook node
+13

AI-powered WooCommerce Support-Agent

With this workflow you get a fully automated AI powered Support-Agent for your WooCommerce webshop. It allows customers to request information about things like: the status of their order the ordered products shipping and billing address current DHL shipping status How it works The workflow receives chat messages from an in a website integrated chat. For security and data-privacy reasons, does the website transmit the email address of the user encrypted with the requests. That ensures that user can just request the information about their own orders. An AI agent with a custom tool supplies the needed information. The tool calls a sub-workflow (in this case, in the same workflow for convenience) to retrieve the required information. This includes the full information of past orders plus the shipping information from DHL. If otherr shipping providers are used it should be simple to adjust the workflow to query information from other APIs like UPS, Fedex or others.
jan
Jan Oberhauser
OpenAI Chat Model node

About OpenAI Chat Model

Related categories

Similar integrations

  • Wikipedia node
  • Zep Vector Store node
  • Postgres Chat Memory node
  • Pinecone Vector Store node
  • Embeddings OpenAI node
  • Supabase: Insert node
  • OpenAI node
  • Default Data Loader node

Over 3000 companies switch to n8n every single week

Connect OpenAI Chat Model with your company’s tech stack and create automation workflows

Last week I automated much of the back office work for a small design studio in less than 8hrs and I am still mind-blown about it.

n8n is a game-changer and should be known by all SMBs and even enterprise companies.

in other news I installed @n8n_io tonight and holy moly it’s good

it’s compatible with EVERYTHING

We're using the @n8n_io cloud for our internal automation tasks since the beta started. It's awesome! Also, support is super fast and always helpful. 🤗