Back to Integrations
integration integration
integration Split Out node

Integrate Split Out with 500+ apps and services

Unlock Split Out’s full potential with n8n, connecting it to similar Core Nodes apps and over 1000 other services. Create adaptable and scalable workflows between Split Out and your stack. All within a building experience you will love.

Popular ways to use Split Out integration

HTTP Request node
Google Drive node
Google Calendar node
+9

Actioning Your Meeting Next Steps using Transcripts and AI

This n8n workflow demonstrates how you can summarise and automate post-meeting actions from video transcripts fed into an AI Agent. Save time between meetings by allowing AI handle the chores of organising follow-up meetings and invites. How it works This workflow scans for the calendar for client or team meetings which were held online. * Attempts will be made to fetch any recorded transcripts which are then sent to the AI agent. The AI agent summarises and identifies if any follow-on meetings are required. If found, the Agent will use its Calendar Tool to to create the event for the time, date and place for the next meeting as well as add known attendees. Requirements Google Calendar and the ability to fetch Meeting Transcripts (There is a special OAuth permission for this action!) OpenAI account for access to the LLM. Customising the workflow This example only books follow-on meetings but could be extended to generate reports or send emails.
jimleuk
Jimleuk
HTTP Request node
Merge node
Clearbit node
+8

Summarize social media activity of a company before a call

How it works It’s very important to come prepared to Sales calls. This often means a lot of manual research about the person you’re calling with. This workflow delivers a summary of the latest social media activity (LinkedIn + X) for businesses you are about to interact with each day. Scans Your Calendar**: Each morning, it reviews your Google Calendar for any scheduled meetings or calls with companies based on each attendee email address. Fetches Latest Posts**: For each identified company, it fetches recent LinkedIn and X posts and summerizes them using AI to deliver a qucik overview for a busy sales rep. Delivers Insights**: You receive personalized emails via Gmail, each dedicated to a company you’re meeting with that day, containing a reminder of the meeting and a summary of company's recent social media activity. Setup steps The workflow requires you to have the following accounts set up in their respective nodes: Google Calendar GMail Clearbit OpenAI Besides those, you will need an account on the RapidAPI platform and subscribe to the following APIs: Fresh LinkedIn Profile Data Twitter Email example
n8n_milorad
Milorad Filipović
HTTP Request node
Merge node
Webhook node
+13

AI-powered WooCommerce Support-Agent

With this workflow you get a fully automated AI powered Support-Agent for your WooCommerce webshop. It allows customers to request information about things like: the status of their order the ordered products shipping and billing address current DHL shipping status How it works The workflow receives chat messages from an in a website integrated chat. For security and data-privacy reasons, does the website transmit the email address of the user encrypted with the requests. That ensures that user can just request the information about their own orders. An AI agent with a custom tool supplies the needed information. The tool calls a sub-workflow (in this case, in the same workflow for convenience) to retrieve the required information. This includes the full information of past orders plus the shipping information from DHL. If otherr shipping providers are used it should be simple to adjust the workflow to query information from other APIs like UPS, Fedex or others.
jan
Jan Oberhauser
Google Drive node
+4

Automate Image Validation Tasks using AI Vision

This n8n workflow shows how using multimodal LLMs with AI vision can tackle tricky image validation tasks which are near impossible to achieve with code and often impractical to be done by humans at scale. You may need image validation when users submitted photos or images are required to meet certain criteria before being accepted. A wine review website may require users only submit photos of wine with labels, a bank may require account holders to submit scanned documents for verification etc. In this demonstration, our scenario will be to analyse a set of portraits to verify if they meet the criteria for valid passport photos according to the UK government website (https://www.gov.uk/photos-for-passports). How it works Our set of portaits are jpg files downloaded from our Google Drive using the Google Drive node. Each image is resized using the Edit Image node to ensure a balance between resolution and processing speed. Using the Basic LLM node, we'll define a "user message" option with the type of binary (data). This will allow us to pass our portrait to the LLM as an input. With our prompt containing the criteria pulled off the passport photo requirements webpage, the LLM is able to validate the photo does or doesn't meet its criteria. A structured output parser is used to structure the LLM's response to a JSON object which has the "is_valid" boolean property. This can be useful to further extend the workflow. Requirements Google Gemini API key Google Drive account Customising this workflow Not using Gemini? n8n's LLM node works with any compatible multimodal LLM so feel free to swap Gemini out for OpenAI's GPT4o or Antrophic's Claude Sonnet. Don't need to validate portraits? Try other use cases such as document classification, security footage analysis, people tagging in photos and more.
jimleuk
Jimleuk
+8

Parse DMARC reports, save them in database and notify on DKIM or SPF error

Who is it for If you are a postmaster or you manage email server, you can set up DKIM and SPF records to ensure that spoofing your email address is hard. On your domain you can also set up DMARC record to receive XML reports from email providers (rua tag). Those reports contain data if email they received passed DKIM and SPF verifications. Since DMARC email is public, you will receive a lot of emails from email providers, not only if DKIM/SPF fail. There is no need for it - you probably only need to know if SPF/DKIM failed. So this script is intended to automatically parse all DMARC reports that come from email providers, but ONLY send you notification if SPF or DKIM failed - meaning that either someone tries to spoof your email or your DKIM/SPF is improperly set up. How it works script monitors postmaster email for DMARC reprots (rua) unpacks report and parses XML into JSON maps JSON and formats fields for MySQL/MariaDB input inputs into database sends notification on DKIM or SPF failure Remember to set up email input mailbox notification channels for slack for email
lukaszpp
Łukasz
HTTP Request node
Postgres node
Slack node
+5

Enrich up to 1500 emails per hour with Dropcontact batch requests

The template allows to make Dropcontact batch requests up to 250 requests every 10 minutes (1500/hour). Valuable if high volume email enrichment is expected. Dropcontact will look for email & basic email qualification if first_name, last_name, company_name is provided. +++++++++++++++++++++++++++++++++++++++++ Step 1: Node "Profiles Query" Connect your own source (Airtable, Google Sheets, Supabase,...) the template is using Postgres by default. Note I: Be careful your source is only returning a maximum of 250 items. Note II: The next node uses the next variables, make sure you can map these from your source file: first_name last_name website (company_name would work too) full_name (see note) Note III: This template is using the Dropcontact Batch API, which works in a POST & GET setup. Not a GET request only to retrieve data, as Dropcontact needs to process the batch data load properly. +++++++++++++++++++++++++++++++++++++++++ Step 2: Node "Data Transformation" Will transform the input variables in the proper json format. This json format is expected from the Dropcontact API to make a batch request. "full_name" is being used as a custom identifier to update the returned email to the proper contact in your source database. To make things easy, use a unique identiefer in the full_name variable. +++++++++++++++++++++++++++++++++++++++++ Step3: Node: "Bulk Dropcontact Requests". Enter your Dropcontact credentials in the node: Bulk Dropcontact Requests. +++++++++++++++++++++++++++++++++++++++++ Step4: Connect your output source by mapping the data you like to use. +++++++++++++++++++++++++++++++++++++++++ Step5: Node: "Slack" (OPTIONAL) Connect your slack account, if an error occur, you will be notified. TIP: Try to run the workflow with a batch of 10 (not 250) as it might need to run initially before you will be able to map the data to your final destination. Once the data fields are properly mapped, adjust back to 250.
vliegendepater
victor de coster

Over 3000 companies switch to n8n every single week

Connect Split Out with your company’s tech stack and create automation workflows

Last week I automated much of the back office work for a small design studio in less than 8hrs and I am still mind-blown about it.

n8n is a game-changer and should be known by all SMBs and even enterprise companies.

in other news I installed @n8n_io tonight and holy moly it’s good

it’s compatible with EVERYTHING

We're using the @n8n_io cloud for our internal automation tasks since the beta started. It's awesome! Also, support is super fast and always helpful. 🤗

Implement complex processes faster with n8n

red icon yellow icon red icon yellow icon