Back to Integrations
integration integration
integration

Integrate Manual Chat Trigger in your LLM apps and 422+ apps and services

Use Manual Chat Trigger to easily build AI-powered applications and integrate them with 422+ apps and services. n8n lets you seamlessly import data from files, websites, or databases into your LLM-powered application and create automated scenarios.

Popular ways to use Manual Chat Trigger integration

Hacker News node
Code node
+4

AI chat with any data source (using the n8n workflow tool)

This AI agent can access data provided by another n8n workflow. Since that workflow can be used to retrieve any data from any service, this template can be used give an agent access to any data. Note that to use this template, you need to be on n8n version 1.19.4 or later.
davidn8n
David Roberts
OpenAI Chat Model node
SerpApi (Google Search) node
+2

AI chatbot that can search the web

This workflow is designed for dynamic and intelligent conversational capabilities. It incorporates OpenAI's GPT-4o model for natural language understanding and generation. Additional tools include SerpAPI and Wikipedia for enriched, data-driven responses. The workflow is triggered manually, and utilizes a 'Window Buffer Memory' to maintain the context of the last 20 interactions for better conversational continuity. All these components are orchestrated through n8n nodes, ensuring seamless interconnectivity. To use this template, you need to be on n8n version 1.50.0 or later.
n8n-team
n8n Team
OpenAI Chat Model node

AI: Conversational agent with custom tool written in JavaScript

This workflow implements a custom tool via JavaScript code which returns a random color to users and excludes the given colors. Note that to use this template, you need to be on n8n version 1.19.4 or later.
n8n-team
n8n Team
HTTP Request node
Markdown node
+5

AI agent that can scrape webpages

⚙️🛠️🚀🤖🦾 This template is a PoC of a ReAct AI Agent capable of fetching random pages (not only Wikipedia or Google search results). On the top part there's a manual chat node connected to a LangChain ReAct Agent. The agent has access to a workflow tool for getting page content. The page content extraction starts with converting query parameters into a JSON object. There are 3 pre-defined parameters: url** – an address of the page to fetch method** = full / simplified maxlimit** - maximum length for the final page. For longer pages an error message is returned back to the agent Page content fetching is a multistep process: An HTTP Request mode tries to get the page content. If the page content was successfuly retrieved, a series of post-processing begin: Extract HTML BODY; content Remove all unnecessary tags to recude the page size Further eliminate external URLs and IMG scr values (based on the method query parameter) Remaining HTML is converted to Markdown, thus recuding the page lengh even more while preserving the basic page structure The remaining content is sent back to an Agent if it's not too long (maxlimit = 70000 by default, see CONFIG node). NB: You can isolate the HTTP Request part into a separate workflow. Check the Workflow Tool description, it guides the agent to provide a query string with several parameters instead of a JSON object. Please reach out to Eduard is you need further assistance with you n8n workflows and automations! Note that to use this template, you need to be on n8n version 1.19.4 or later.
eduard
Eduard
Webhook node
Google Drive node
Respond to Webhook node
+8

AI Crew to Automate Fundamental Stock Analysis - Q&A Workflow

How it works: Using a Crew of AI agents (Senior Researcher, Visionary, and Senior Editor), this crew will automatically determine the right questions to ask to produce a detailed fundamental stock analysis. This application has two components: a front-end and a Stock Q&A engine. The front end is the team of agents automatically figuring out the questions to ask, and the back-end part is the ability to answer those questions with the SEC 10K data. This template implements the Stock Q&A engine. For the front-end of the application, you can choose one of two options: using CrewAI with the Replit environment (code approach) fully visual approach with n8n template (AI-powered automated stock analysis) Setup steps: Use first workflow in template to upsert a company annual report PDF (such as from SEC 10K filling) Get URL for Webhook in second workflow template CrewAI front-end: Youtube overview video Fork this AI Agent environment Crew Agent Environment Set the webhook URL into N8N_WEBHOOK_URL variable Set OpenAI_API_KEY variable
derekcheungsa
Derek Cheung
Hugging Face Inference Model node

Use an open-source LLM (via HuggingFace)

This workflow demonstrates how to connect an open-source model to a Basic LLM node. The workflow is triggered when a new manual chat message appears. The message is then run through a Language Model Chain that is set up to process text with a specific prompt to guide the model's responses. Note that open-source LLMs with a small number of parameters require slightly different prompting with more guidance to the model. You can change the default Mistral-7B-Instruct-v0.1 model to any other LLM supported by HuggingFace. You can also connect other nodes, such as Ollama. Note that to use this template, you need to be on n8n version 1.19.4 or later.
n8n-team
n8n Team

Over 3000 companies switch to n8n every single week

Connect Manual Chat Trigger with your company’s tech stack and create automation workflows

We're using the @n8n_io cloud for our internal automation tasks since the beta started. It's awesome! Also, support is super fast and always helpful. 🤗

Last week I automated much of the back office work for a small design studio in less than 8hrs and I am still mind-blown about it.

n8n is a game-changer and should be known by all SMBs and even enterprise companies.

in other news I installed @n8n_io tonight and holy moly it’s good

it’s compatible with EVERYTHING