Back to Integrations
integration integration
integration

Integrate Basic LLM Chain in your LLM apps and 422+ apps and services

Use Basic LLM Chain to easily build AI-powered applications and integrate them with 422+ apps and services. n8n lets you seamlessly import data from files, websites, or databases into your LLM-powered application and create automated scenarios.

Popular ways to use Basic LLM Chain integration

Telegram node
Telegram Trigger node
+4

Traveler Co-Pilot: AI-Powered Telegram for Easy Language and Image Translation

Introduction The Traveler Co-Pilot empowers you to confidently traverse the world, connecting with ease and breaking language barriers: Engage in conversations with locals Navigate menus at foreign eateries Comprehend road signs effortlessly. Features Seamless Speech-to-Speech Translation** Communicate in any of the 55 supported languages, and witness the bot translate your words into another language in real-time, all through speech. Visual Translation Magic** Capture images containing text, and the bot will work its magic by recognizing and translating the text into the desired language, right before your eyes. Setup Steps Open the Settings node and specify the languages you would like to work with
derekcheungsa
Derek Cheung
Airtable node
Twilio node
+7

Handling Appointment Leads and Follow-up With Twilio, Cal.com and AI

This n8n workflow builds an appointment scheduling AI agent which can Take enquiries from prospective customers and help them book an appointment by checking appointment availability Where no appointment is booked, the Agent is able to send follow-up messages to re-engage leads. After an appointment is booked, the agent is able reschedule or even cancel the booking for the user without human intervention. For small outfits, this workflow could contribute the necessary "man-power" required to increase business sales. The sample Airtable can be found here: https://airtable.com/appO2nHiT9XPuGrjN/shroSFT2yjf87XAox 2024-10-22 Updated to Cal.com API v2. How it works The customer sends an enquiry via SMS to trigger our workflow. For this trigger, we'll use a Twilio webhook. The prospective or existing customer's number is logged in an Airtable Base which we'll be using to track all our enquries. Next, the message is sent to our AI Agent who can reply to the user and decide if an appointment booking can be made. The reply is made via SMS using Twilio. A scheduled trigger which runs every day, checks our chat logs for a list of prospective customers who have yet to book an appointment but still show interest. This list is sent to our AI Agent to formulate a personalised follow-up message to each lead and ask them if they want to continue with the booking. The follow-up interaction is logged so as to not to send too many messages to the customer. Requirements A Twilio account to receive customer messages. An Airtable account and Base to use as our datastore for enquiries. Cal.com account to use as our scheduling service. OpenAI account for our AI model. Customising this workflow Not using Airtable? Swap this out for your CRM of choice such as hubspot or your own service. Not using Cal.com? Swap this out for API-enabled services such as Acuity Scheduling or your own service.
jimleuk
Jimleuk
Google Drive node
+4

Automate Image Validation Tasks using AI Vision

This n8n workflow shows how using multimodal LLMs with AI vision can tackle tricky image validation tasks which are near impossible to achieve with code and often impractical to be done by humans at scale. You may need image validation when users submitted photos or images are required to meet certain criteria before being accepted. A wine review website may require users only submit photos of wine with labels, a bank may require account holders to submit scanned documents for verification etc. In this demonstration, our scenario will be to analyse a set of portraits to verify if they meet the criteria for valid passport photos according to the UK government website (https://www.gov.uk/photos-for-passports). How it works Our set of portaits are jpg files downloaded from our Google Drive using the Google Drive node. Each image is resized using the Edit Image node to ensure a balance between resolution and processing speed. Using the Basic LLM node, we'll define a "user message" option with the type of binary (data). This will allow us to pass our portrait to the LLM as an input. With our prompt containing the criteria pulled off the passport photo requirements webpage, the LLM is able to validate the photo does or doesn't meet its criteria. A structured output parser is used to structure the LLM's response to a JSON object which has the "is_valid" boolean property. This can be useful to further extend the workflow. Requirements Google Gemini API key Google Drive account Customising this workflow Not using Gemini? n8n's LLM node works with any compatible multimodal LLM so feel free to swap Gemini out for OpenAI's GPT4o or Antrophic's Claude Sonnet. Don't need to validate portraits? Try other use cases such as document classification, security footage analysis, people tagging in photos and more.
jimleuk
Jimleuk
HTTP Request node
Merge node
Slack node
Lemlist node
+6

Classify lemlist replies using OpenAI and automate reply handling

Who this is for This workflow is for sales people who want to quickly and efficiently follow up with their leads What this workflow does This workflow starts every time a new reply is received in lemlist. It then classifies the response using openAI and creates the correct follow up task. The follow-up tasks currently include: Slack alerts when a lead for each new replies Tag interested leads in lemlist Unsubscription of leads when they request it The Slack alerts include: Lead email address Sender email address Reply type (positive, not interested...etc) A preview of the reply Setup To set this template up, simply follow the stickies steps in it How to customize this workflow to your needs Adjust the follow up tasks to your needs Change the Slack notification to your needs ...
lucasperret
Lucas Perret
HTTP Request node
+12

Respond to WhatsApp Messages with AI Like a Pro!

This n8n template demonstrates the beginnings of building your own n8n-powered WhatsApp chatbot! Under the hood, utilise n8n's powerful AI features to handle different message types and use an AI agent to respond to the user. A powerful tool for any use-case! How it works Incoming WhatsApp Trigger provides a way to get messages into the workflow. The message received is extracted and sent through 1 of 4 branches for processing. Each processing branch uses AI to analyse, summarize or transcribe the message so that the AI agent can understand it. The supported types are text, image, audio (voice notes) and video (no sound). The AI Agent is used to generate a response generally and uses a wikipedia tool for more complex queries. Finally, the response message is sent back to the WhatsApp user using the WhatsApp node. How to use Once you have setup and configured your WhatsApp account, you'll need to activate your workflow to start processing messages. Good to know: Large media files may negatively impact workflow performance. Requirements WhatsApp Buisness account OpenAI for LLM Customising this workflow For performance reasons, consider processing audio and video using dedicated services. To handle videos with sound, you have 2 choices: use an LLM like Gemini which fully supports video processing (though video input is not currently supported in LLM node) or split the video into a image track and audio track and process separately. Good luck! Go beyond and create rich and engagement customer experiences by responding using images, audio and video instead of just text!
jimleuk
Jimleuk
Google Sheets node
HTTP Request node
Merge node
+11

Visual Regression Testing with Apify and AI Vision Model

This n8n workflow is a proof-of-concept template exploring how we might work with multimodal LLMs and their multi-image analysis capabilities. In this demo, we compare 2 screenshots of a webpage taken at different timestamps and pass both to our multimodal LLM for a visual comparison of differences. Handling multiple binary inputs (ie. images) in an AI request is supported by n8n's basic LLM node. How it works This template is intended to run as 2 parts: first to generate the base screenshots and next to run the visual regression test which captures fresh screenshots. Starting with a list of webpages captured in a Google sheet, base screenshots are captured for each using a external web scraping service called Apify.com (I prefer Apify but feel free to use whichever web scraping service available to you) These base screenshots are uploaded to Google Drive and will be referenced later when we run our testing. Phase 2 of the workflow, we'll use a scheduled trigger to fire sometime in the future which will reuse our web scraping service to generate fresh screenshots of our desired webpages. Next, re-download our base screenshots in parallel and with both old and new captures, we'll pass these to our LLM node. In the LLM node's options, we'll define 2 "user message" inputs with the type of binary (data) for our images. Finally, we'll prompt our LLM with our testing criteria and capture the regressions detected. Note, results will vary depending on which LLM you use. A final report can be generated using the LLM's output and is uploaded to Linear. Requirements Apify.com API key for web screenshotting service Google Drive and Sheets access to store list of webpages and captures Customising this workflow Have your own preferred web screenshotting service? Feel free to swap out Apify with your service of choice. If the web screenshot is too large, it may prove difficult for the LLM to spot differences with precision. Try splitting up captures into smaller images instead.
jimleuk
Jimleuk

About Basic LLM Chain

Related categories

Similar integrations

  • Wikipedia node
  • OpenAI Chat Model node
  • Zep Vector Store node
  • Postgres Chat Memory node
  • Pinecone Vector Store node
  • Embeddings OpenAI node
  • Supabase: Insert node
  • OpenAI node
  • Default Data Loader node

Over 3000 companies switch to n8n every single week

Connect Basic LLM Chain with your company’s tech stack and create automation workflows