Back to Integrations
integration integration
integration

Integrate Window Buffer Memory (easiest) in your LLM apps and 422+ apps and services

Use Window Buffer Memory (easiest) to easily build AI-powered applications and integrate them with 422+ apps and services. n8n lets you seamlessly import data from files, websites, or databases into your LLM-powered application and create automated scenarios.

Popular ways to use Window Buffer Memory (easiest) integration

Airtable node
HTTP Request node
Merge node
+24

Scale Deal Flow with a Pitch Deck AI Vision, Chatbot and QDrant Vector Store

Are you a popular tech startup accelerator (named after a particular higher order function) overwhelmed with 1000s of pitch decks on a daily basis? Wish you could filter through them quickly using AI but the decks are unparseable through conventional means? Then you're in luck! This n8n template uses Multimodal LLMs to parse and extract valuable data from even the most overly designed pitch decks in quick fashion. Not only that, it'll also create the foundations of a RAG chatbot at the end so you or your colleagues can drill down into the details if needed. With this template, you'll scale your capacity to find interesting companies you'd otherwise miss! Requires n8n v1.62.1+ How It Works Airtable is used as the pitch deck database and PDF decks are downloaded from it. An AI Vision model is used to transcribe each page of the pitch deck into markdown. An Information Extractor is used to generate a report from the transcribed markdown and update required information back into pitch deck database. The transcribed markdown is also uploaded to a vector store to build an AI chatbot which can be used to ask questions on the pitch deck. Check out the sample Airtable here: https://airtable.com/appCkqc2jc3MoVqDO/shrS21vGqlnqzzNUc How To Use This template depends on the availability of the Airtable - make a duplicate of the airtable (link) and its columns before running the workflow. When a new pitchdeck is received, enter the company name into the Name column and upload the pdf into the File column. Leave all other columns blank. If you have the Airtable trigger active, the execution should start immediately once the file is uploaded. Otherwise, click the manual test trigger to start the workflow. When manually triggered, all "new" pitch decks will be handled by the workflow as separate executions. Requirements OpenAI for LLM Airtable For Database and Interface Qdrant for Vector Store Customising This Workflow Extend this starter template by adding more AI agents to validate claims made in the pitch deck eg. Linkedin Profiles, Page visits, Reviews etc.
jimleuk
Jimleuk
Slack node
Webhook node
OpenAI Chat Model node
+3

Slack chatbot powered by AI

This workflow offers an effective way to handle a chatbot's functionality, making use of multiple tools for information retrieval, conversation context storage, and message sending. It's a setup tailored for a Slack environment, aiming to offer an interactive, AI-driven chatbot experience. Note that to use this template, you need to be on n8n version 1.19.4 or later.
n8n-team
n8n Team
HTTP Request node
YouTube node
+7

AI Youtube Trend Finder Based On Niche

This n8n workflow is designed to assist YouTube content creators in identifying trending topics within a specific niche. By leveraging YouTube's search and data APIs, it gathers and analyzes video performance metrics from the past two days to provide insights into what content is gaining traction. Here's how the workflow operates: Trigger Setup: The workflow begins when a user sends a query through the chat_message_received node. If no niche is provided, the AI prompts the user to select or input one. AI Agent (Language Model): The central node utilizes a GPT-based AI agent to: Understand the user's niche or content preferences. Generate tailored search terms related to the niche. Process YouTube API responses and summarize trends using insights such as common themes, tags, and audience engagement metrics (views, likes, and comments). YouTube Search: The youtube_search node runs a secondary workflow to query YouTube for relevant videos published within the last two days. It retrieves basic video data such as video IDs, relevance scores, and publication dates. Video Details Retrieval: The workflow fetches additional details for each video: Video Snippet: Metadata like title, description, and tags. Video Statistics: Metrics such as views, likes, and comments. Content Details: Video duration, ensuring only content longer than 3 minutes and 30 seconds is analyzed. Data Processing: Video metadata is cleaned, sanitized, and stored in memory. Tags, titles, and descriptions are analyzed to identify patterns and trends across multiple videos. Output: The workflow compiles insights and presents them to the user, highlighting: The most common themes or patterns within the niche. URLs to trending videos and their respective channels. Engagement statistics, helping the user understand the popularity of the content. Key Notes for Setup: API Keys**: Ensure valid YouTube API credentials are configured in the get_videos, find_video_snippet, find_video_statistics, and find_video_data nodes. Memory Buffer**: The window_buffer_memory node ensures the AI agent retains context during analysis, enhancing the quality of the generated insights. Search Term Customization**: The AI agent dynamically creates search terms based on the user’s niche to improve search precision. Use Case: This workflow is ideal for YouTubers or marketers seeking data-driven inspiration for creating content that aligns with current trends, maximizing the potential to engage their audience. Example Output: For the niche "digital marketing": Trending Topic: Videos about "mental triggers" and "psychological marketing." Tags: "SEO," "Conversion Rates," "Social Proof." Engagement: Videos with over 200K views and high likes/comment ratios are leading trends. Video links: https://www.youtube.com/watch?v=video_id1 https://www.youtube.com/watch?v=video_id2
leonardogrig
Leonardo Grigorio
OpenAI Chat Model node
SerpApi (Google Search) node

AI agent chat

This workflow employs OpenAI's language models and SerpAPI to create a responsive, intelligent conversational agent. It comes equipped with manual chat triggers and memory buffer capabilities to ensure seamless interactions. To use this template, you need to be on n8n version 1.50.0 or later.
n8n-team
n8n Team
Redis node
Twilio node
+7

Enhance Customer Chat by Buffering Messages with Twilio and Redis

This n8n workflow demonstrates a simple approach to improve chat UX by staggering an AI Agent's reply for users who send in a sequence of partial messages and in short bursts. How it works Twilio webhook receives user's messages which are recorded in a message stack powered by Redis. The execution is immediately paused for 5 seconds and then another check is done against the message stack for the latest message. The purpose of this check lets use know if the user is sending more messages or if they are waiting for a reply. The execution is aborted if the latest message on the stack differs from the incoming message and continues if they are the same. For the latter, the agent receives the buffered messages up to that point and is able to respond to them in a single reply. Requirements A Twilio account and SMS-enabled phone number to receive messages. Redis instance for the messages stack. OpenAI account for the language model. Customising the workflow This workflow should work for other common messaging platforms such as Whatsapp and Telegram. 5 seconds too long or too short? Adjust the wait threshold to suit your customers.
jimleuk
Jimleuk
Slack node
Code node
+5

Ask a human for help when the AI doesn't know the answer

This is a workflow that tries to answer user queries using the standard GPT-4 model. If it can't answer, it sends a message to Slack to ask for human help. It prompts the user to supply an email address. This workflow is used in Advanced AI examples | Ask a human in the documentation. To use this workflow: Load it into your n8n instance. Add your credentials as prompted by the notes. Configure the Slack node to use your Slack details, or swap out Slack for a different service.
deborah
Deborah

About Window Buffer Memory (easiest)

Related categories

Similar integrations

  • Wikipedia node
  • OpenAI Chat Model node
  • Zep Vector Store node
  • Postgres Chat Memory node
  • Pinecone Vector Store node
  • Embeddings OpenAI node
  • Supabase: Insert node
  • OpenAI node

Over 3000 companies switch to n8n every single week

Connect Window Buffer Memory (easiest) with your company’s tech stack and create automation workflows

in other news I installed @n8n_io tonight and holy moly it’s good

it’s compatible with EVERYTHING

Last week I automated much of the back office work for a small design studio in less than 8hrs and I am still mind-blown about it.

n8n is a game-changer and should be known by all SMBs and even enterprise companies.

We're using the @n8n_io cloud for our internal automation tasks since the beta started. It's awesome! Also, support is super fast and always helpful. 🤗